Skip to main content

National Bird Day: Why Birds Matter to Us

National Bird Day is celebrated every year on 5 January . This day is observed to spread awareness about birds, their importance in nature, and the need to protect them. Birds are beautiful living beings and play a very important role in keeping our environment healthy. Origin of National Bird Day National Bird Day was first celebrated in the year 2002 . It was started by bird lovers and environmental groups to protect birds from dangers like deforestation, pollution, and illegal hunting. The main aim of this day is to teach people, especially students, why birds are important and how we can help save them. Why Is National Bird Day Celebrated Every Year? National Bird Day is celebrated every year because many bird species are disappearing due to human activities. Cutting trees, using plastic, pollution, and climate change are harming birds and their homes. This day reminds us that: Birds need protection Nature should be respected Everyone has a responsibil...

Sabine Formula | Oscillations and Waves

Sabine Formula

Reverberation time

  • Reverberation is defined as persistence of audible sound after the source has been switched off.
  • The time for which sound persist is known as reverberation time.

Assumptions

  • Distribution of energy is uniform in all parts of the hall.
  • No interference of sound waves in the hall.
  • Absorption coefficient does not depend on the intensity of sound.
  • There is no loss of energy in air.

Derivation

  • Average energy density within the hall in all direction = u
  • Energy received by elementary volume dV = u dV

  • Consider an element of surface area ds of a plane wall.
  • Elementary volume at a distance r from the centre of ds in the direction θ from normal on ds = dV
  • Solid angle subtended by surface element at elementary volume, dω = ds cos θ / r2
  • Area of shaded elementary portion = dr × r dθ
  • If the whole figure is rotated about the normal by an angle 2π then the elementary volume trace by this portion
                dV = elementary area × circumferential path
                      = dr . rdθ × 2πr sin θ
                      = 2πr2 sin θ dr dθ
  • Sound energy in volume dV 
                u dV = u × 2πr2 sin θ dr dθ
  • The fraction of this energy incident on area ds

  • Energy received by ds due to whole shell lying between two hemispheres for all values of θ
                    
  • Energy received per second by ds
                    
  • Here v = speed of sound in air
  • If a = absorption coefficient of ds, then
  • Energy absorbed per second by ds
                                             
  • Total energy absorbed per second by hall
                  
  • Total absorption of all the surface within the enclosure A = Σ a ds
  • Total energy absorbed per second by hall = uvA/4
  • Since V is the volume of enclosure, therefore
  • Total sound energy in the room at any time = uV
  • Rate of increase of this energy
                
  • Rate of absorption of energy
                
  • Rate of emission of energy from the source = E

Growth of sound

  • When source starts of sounding, t = 0, u = 0

  • When t = ∞, u = umax     ⇒     umax = 4E / vA
  • u = umax [1 - exp (-βt)]

Decay of sound

  • When source is cut off, t = 0, u = umax, E = 0


Reverberation period (T)

  • u = umax [1 - exp (-βt)]
  • If t = T, u = 10-6 umax

  • But v = 340 m/s
                
  • Above formula is known as Sabine formula.
To know more about Sabine formula please click on https://youtu.be/Qe-M7HqzHV0

Comments

Popular posts from this blog

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

आवेश तथा उसके गुण | Charge and its properties in Hindi

आवेश तथा उसके गुण आवेश क्या है कोई नहीं जानता कि आवेश क्या है, केवल हम यह जानते हैं कि आवेश क्या कर सकता है तथा इसके गुण क्या हैं ? आवेश के प्रकार आवेश दो प्रकार के होते हैं, धनावेश तथा ऋणावेश। धनावेश प्रोटॉन के कारण होता है तथा ऋणावेश इलेक्ट्रॉन के कारण। तीसरे प्रकार का कोई आवेश ब्रहाण्ड में विद्यमान नहीं है। आवेश का क्वांटीकरण आवेश सदैव पैकेट के रूप में होता है, सतत्‌ नहीं। किसी वस्तु को दिया गया आवेश सदैव एक न्यूनतम आवेश का पूर्ण गुणज होता है यह न्यूनतम आवेश इलेक्ट्रॉन के आवेश के बराबर होता है, जिसका मान e = 1.6*10 -19 C होता है। q = ne,        यहां n = 0, 1, 2, ... आवेश संरक्षण का नियम आवेश को न तो उत्पन्न किया जा सकता है तथा न ही नष्ट किया जा सकता है, परन्तु इसे निकाय के एक भाग से दूसरे भाग में स्थानान्तरित किया जा सकता है। किसी विलगित निकाय का आवेश सदैव संरक्षित रहता है। Σq i = नियत,           यहां q i = iवे कण का आवेश आवेश के गुण स्थिर विद्युत आव...

Advanced Calculus | Mathematics | BSc

Advanced Calculus Advanced Differential Calculus, Integral Calculus and Vector Calculus Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria ISBN : 978-81-7906-950-9 Price: Rs. 375.00 Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Advanced Calculus by Saraswat This book includes the following topics  Continuity Introduction Limit Left and right limit To find the R.H.L. and L.H.L. of a function Existence of limit)/li> Distinction between the value and limit of a function Some theorems based on limits Methods of finding the limit of functions Some standard limits Cauchy’s definition of continuity Continuity from left and right Continuity of a function in an interval Continuity in the open interval); Continuity in the closed in...