Skip to main content

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल 30 नवम्बर को राजस्थान वन विभाग उदयपुर डिविजन तथा WWF-India उदयपुर डिविजन के सानिध्य में महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल की गई, जिसमें WWF-India के स्टेट काॅर्डिनेटर श्रीमान अरूण सोनी तथा वन विभाग कीे ओर से डाॅ. सतीश कुमार शर्मा, सेवानिवृत्त अधिकारी मौजूद थे। मुझे भी इस इको ट्रेल में जाने का सुअवसर प्राप्त हुआ, जो गोरीला व्यू पाॅइंट से बड़ी-लेक व्यू पाॅइंट तक की गई इसमें मुझे विज्ञान की एक नई शाखा के बारे में पता चला, जिसे टट्टी विज्ञान कहा जाता है। सुनने में आपको थोड़ा अजीब लगेगा, मुझे भी सुनकर हैरानी हुई, परन्तु वास्तव में एक ऐसा भी विज्ञान है, जिसके बारे में डाॅ. सतीश शर्मा ने बड़े ही विस्तार पूर्वक बताया कि किस प्रकार वनों में जानवरों की टट्टी देखकर यह पता लगाया जा सकता है कि यहां कौनसा जानवर आया था। जानवरों की टट्टी कितनी पुरानी है, वह गीली है या सूखी है। इसी के आधार पर उस विशेष जंगल में कौन-कौनसे जानवर विचरण करते हैं, उसके बारे में वन विज्ञान के कर्मचारी पता लगा लेते हैं। जानवरों की टट्टी का विश्लेषण करके यह पता लगा...

Fermi Dirac Statistics

Fermi Dirac Statistics

  • It is applied to Fermions or Fermi particles, i.e. indistinguishable particle with half integral spin.
  • Particles are indistinguishable from each other.
  • Each cell or sublevel may contain 0 or 1 particle i.e., gi,  >> ni
  • Total number of particles of system remain constant, n = Σn = constant
  • Sum of energies of all the particles in the different groups taken together i.e., total energy of the system remain constant E = Σniε = constant

  • Consider a system of n independent identical particles having half integral spin.
  • These particles be divided into quantum groups or levels such that
  • Energy levels    ε1, ε2, ε3, ...ε
  • Degeneracies    g1, g2, g3, ...g
  • Occupation number    n1, n2, n3, ...n

  • Consider a box, divide it into g sections, distribute nparticles among them.
  • Number of ways to put first particle in any one of the iih  level = g
  • Number of ways to put second particle in the remaining (g – 1) state = (g – 1)
                                
  • Total number of ways to distribute n particles in g states = g(g – 1) (g – 2) ... (gi – ni + 1)

  • Sterling approximation log x! = x log x – x


  • To know about this lecture in more detail please visit on https://youtu.be/Tap561DKzIw

Comments

Popular posts from this blog

Differential equations in Hindi | अवकल समीकरण | Mathematics | BSc

अवकल समीकरण (Differential equations) साधारण अवकल समीकरण तथा आंशिक अवकल समीकरण (Ordinary Differential Equation and Partial Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. गजेन्द्रपाल सिंह राठौड़ ISBN : 978-81-7906-969-1 Price: Rs. 385.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Differential Equations by Saraswat This book includes the following topics  यथार्थ एवं विशिष्ट रूप वाली अवकल समीकरण (Exact Differential Equations and Equations of Special Forms) परिचय (Introduction) nवीं कोटि के यथार्थ रैखिक अवकल समीकरण (Exact linear differential equation of nth order) nवीं कोटि के रैखिक अवकल समीकरण की यथार्थता का प्रतिबन्ध (Condition of exactness of a linear differential equation of order n) समाकलन गुणांक अरैखिक अवकल समीकरण की यथार्थता (Exactness of ...

Calculus in Hindi | कलन | Mathematics | BSc

कलन (Calculus) अवकलन, समाकलन तथा अवकल समीकरण (Differential Calculus, Integral Calculus and Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. चन्द्रपाल सिंह चौहान  ISBN : 978-81-7906-933-2  Price: Rs. 295.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone: +91 9664392614 To buy this book click on Calculus in Hindi by Saraswat This book includes the following topics  पदिक समीकरण एवं चाप की लम्बाई के अवकलज (Pedal Equations and Derivative of the Length of an Arc) ध्रुवीय निर्देशांक (Polar co-ordinates) कार्तीय एवं ध्रुवीय निर्देशांकों में सम्बन्ध (Relation between cartesian and polar co-ordinates) त्रिज्य सदिश एवं स्पर्श रेखा के मध्य कोण (Angle between radius vector and tangent) दो ध्रुवीय वक्रों का प्रतिच्छेन कोण (Angle of intersection of two polar curves) ध्रुवीय स्पर्शी, अधःस्पर्शी, लम्ब एवं अधोलम्ब तथा उनकी लम्बाई...

Aplanatic points of a spherical refracting surface | Optics | General theory of image formation

Aplanatic points of a spherical refracting surface From Abbe’s sine condition                                  If this ratio is constant for a particular surface, then the surface is known as aplanatic surface . An aplanatic surface is a surface which forms a point image of a point object situated on its axis. The image formed by aplanatic surface is free from optical aberrations. Using sine law in △OPC                                                                            ...(1) Since refraction is taking place from denser to rarer, so from Snell's law              ...