Skip to main content

Bhupal Nobles' University, Udaipur Convocation | भूपाल नोबल्स विश्वविद्यालय, उदयपुर दीक्षांत समारोह

भूपाल नोबल्स विश्वविद्यालय दीक्षांत समारोह महाराणा प्रताप स्टेशन रोड, सेवाश्रम सर्कल, उदयपुर। भूपाल नोबल्स विश्वविद्यालय उदयपुर द्वारा वर्ष 2018 से 2024 तक की स्नातक एवं स्नातकोत्तर परीक्षा में उत्तीर्ण एवं विद्यावाचस्पति (Ph.D.) उपाधिधारियों के लिए दीक्षान्त समारोह 27 मार्च 2025 गुरूवार को प्रातः 10:30 बजे आयोजित करने का निश्चित हुआ है। दीक्षान्त समारोह में 2020 से 2025 तक की विद्यावाचस्पति की उपाधियों तथा स्नातक एवं स्नातकोत्तर परीक्षाओं में वर्ष 2024 तक प्रथम स्थान प्राप्त करने वाले छात्रों को उपाधि एवं स्वर्ण पदक प्रदान किए जायेंगे। अतः जो उपाधिधारी उक्त समारोह में उपाधि प्राप्त करने के इच्छुक हों, वे समारोह में उपस्थित होने की लिखित सूचना के साथ स्नातक एवं स्नातकोत्तर प्रथम वरीयता प्राप्त छात्रों हेतु, पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) एवं विद्यावाचस्पति (Ph.D.), शोधार्थी पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) नकद अथवा डिमाण्ड ड्राफ्ट भूपाल नोबल्स विश्वविद्यालय, उदयपुर के नाम बनाकर कुलसचिव, भूपाल नोबल्स विश्वविद्यालय, उदयपुर को दिनांक 17.03.2025 तक ...

Postulates of classical statistical mechanics | Statistical mechanics

Postulates of classical statistical mechanics

  • It is based on the following postulates

Postulates of equal a priori probability

  • According to this postulate the probability of finding the phase point for given system in any region of the Γ-space is identical with that for any other region of equal extension or volume.
  • Or For a system in equilibrium, all accessible microstates corresponding to a given macro-state are equally probable.
  • Thus in thermodynamic equilibrium the system under consideration is a member of an ensemble (micro-canonical ensemble) with a density function ρ (p, q) and the value of density function is given according to the following rule.
  • If E < H (p, q) < E + ΔE, ρ (p, q) = constant, otherwise ρ (p, q) = 0
  • Thus all members of the ensemble have the same number of particles N and same volume V.
  • Let f (p, q) represents any measurable property of the system.
  • If the postulate of equal a priori probability is useful, then the average value of f (p, q) from different methods have the same results.

(i) Most probable value of f (p, q)

  • It is that value of f (p, q) which is possessed by the largest number of systems in the ensemble.

(ii) Ensemble average of f (p, q)

  • The ensemble average of f (p, q) i.e, < f > is given by

  • Both the values of f (p, q) i.e., the most probable value and the ensemble average are nearly equal, if the mean square fluctuation (MSF) is small i.e.,

                 
  • In all physical cases, MSF is of the order of 1/N
  • Since N → ∞ and therefore MSF << 1
  • Thus the most probable value of f (p, q) and ensemble average of f (p, q) both have identical values.


    Our other websites

    https://www.sacademy.co.in

    https://blog.sacademy.co.in

    https://bhakti.sacademy.co.in

    http://food.sacademy.co.in


    Comments

    Popular posts from this blog

    Electric field due to circular loop of charge | Electromagnetics

    Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

    Jacobi-Poisson theorem | Poisson’s second theorem | Classical mechanics

    Jacobi-Poisson theorem Poisson’s second theorem If u and v are any two constants of motion of any given system, then their Poisson bracket [ u , v ] are also a constant of motion. If u is a constants of motion, then [ u , H ] + ∂ u /∂t = 0 ⇒ [ u ,  H ] = - ∂ u /∂t. Given u and v are constant of motion               We have to prove [u, v] is also a constant of motion                     Proof By Jacobi identity This is mathematical form of  Jacobi-Poisson’s theorem or Poisson's second theorem . According to statement of Jacobi-Poisson theorem if  u and v are any two constants of motion of any given system, then their Poisson bracket [ u , v ] are also a constant of motion. To know about Jacobi-Poisson theorem of Poisson second theorem  click on the link for English  and  click on the link for Hindi...

    Aplanatic points of a spherical refracting surface | Optics | General theory of image formation

    Aplanatic points of a spherical refracting surface From Abbe’s sine condition                                  If this ratio is constant for a particular surface, then the surface is known as aplanatic surface . An aplanatic surface is a surface which forms a point image of a point object situated on its axis. The image formed by aplanatic surface is free from optical aberrations. Using sine law in △OPC                                                                            ...(1) Since refraction is taking place from denser to rarer, so from Snell's law              ...