Skip to main content

Bhupal Nobles' University, Udaipur Convocation | भूपाल नोबल्स विश्वविद्यालय, उदयपुर दीक्षांत समारोह

भूपाल नोबल्स विश्वविद्यालय दीक्षांत समारोह महाराणा प्रताप स्टेशन रोड, सेवाश्रम सर्कल, उदयपुर। भूपाल नोबल्स विश्वविद्यालय उदयपुर द्वारा वर्ष 2018 से 2024 तक की स्नातक एवं स्नातकोत्तर परीक्षा में उत्तीर्ण एवं विद्यावाचस्पति (Ph.D.) उपाधिधारियों के लिए दीक्षान्त समारोह 27 मार्च 2025 गुरूवार को प्रातः 10:30 बजे आयोजित करने का निश्चित हुआ है। दीक्षान्त समारोह में 2020 से 2025 तक की विद्यावाचस्पति की उपाधियों तथा स्नातक एवं स्नातकोत्तर परीक्षाओं में वर्ष 2024 तक प्रथम स्थान प्राप्त करने वाले छात्रों को उपाधि एवं स्वर्ण पदक प्रदान किए जायेंगे। अतः जो उपाधिधारी उक्त समारोह में उपाधि प्राप्त करने के इच्छुक हों, वे समारोह में उपस्थित होने की लिखित सूचना के साथ स्नातक एवं स्नातकोत्तर प्रथम वरीयता प्राप्त छात्रों हेतु, पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) एवं विद्यावाचस्पति (Ph.D.), शोधार्थी पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) नकद अथवा डिमाण्ड ड्राफ्ट भूपाल नोबल्स विश्वविद्यालय, उदयपुर के नाम बनाकर कुलसचिव, भूपाल नोबल्स विश्वविद्यालय, उदयपुर को दिनांक 17.03.2025 तक ...

Poisson brackets | Identities of Poisson brackets | Classical Mechanics

Poisson brackets and its identities

Poisson brackets

  • A Poisson bracket is a special kind of relation between a pair of dynamical variables of any holonomic system, which is found to remain invariant under any canonical transformation.
  • They are used to construct new integrals of motion from the known integrals.
  • They are classical analogues of commutation relation between operators in quantum mechanics.
  • If u (p, q, t) and v (p, q, t) are two dynamical variables, then the Poisson bracket of these quantities with respect to canonical variables (p, q) is
                

Identities of Poisson brackets

  • [u, v] = – [v, u]


  • Thus the Poisson bracket of any two dynamical variables is anti-commutative.
  • If u = v, then
                
  • [u, u](p, q) = 0
  • [uu] = [vv] = 0

  • If c is any constant, then [cu, v] = [u, cv] = c [u, v]

  • Similarly [u, cv] = c [u, v]
  • ∴  [cu, v] = [u, cv] = c [u, v]

  • The Poisson brackets satisfy the distributive property
  • [u + v, w] = [u, w] + [v, w] and [u, v w] = [u, v]w + v[u, w]

  • Similarly [u, v w] = [u, v]w + v[u, w]

  • The partial derivative of Poisson bracket is

  • Jacobi identity of Poisson bracket is [u [v, w]] + [v [w, u]] + [w [u, v]] = 0

  • If F (w1, w2, …, wn) be a differentiable function of w1, w2, …, wn and all w’s be the function of (p, q, t), then

  • Let F (w1, w2) be a differentiable function of w1 and w2

To know about Poisson bracket and its identities please click on the link for English and  click on the link for Hindi

Comments

Popular posts from this blog

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब | Kinetic theory of gases and Pressure of an ideal gas in Hindi | Thermodynamics

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब गैसों के गतिज सिद्धान्त की अभिधारणाएं एक गैस अत्यन्त छोटे, अदृश्य एवं पूर्णतः प्रत्यास्थ कणों से मिलकर बनी होती है, जो अणु   कहलाते हैं। एक शुद्ध गैस के सभी अणु समदृश होते हैं तथा ये सभी सम्भव दिशाओं में सभी सम्भव वेग से सतत्‌ रूप से गति करते रहते हैं। गैस जिस पात्र में भरी जाती है, वह उस पात्र की दीवारों पर दाब लगाती है। गैस के अणु किन्हीं दो क्रमागत टक्करों के मध्य सीधी रेखा में गति करते हैं। गैस के अणुओं का आकार किन्हीं दो क्रमागत टक्करों के मध्य तय की गई दूरी की तुलना में अनन्त सूक्ष्म होता है। ये टक्करें तात्क्षणिक होती हैं तथा टक्करों में गतिज ऊर्जा की कोई हानि नहीं होती है। अणु एक दूसरे पर कोई बल नहीं लगाते हैं। वे एक दूसरे पर बल केवल टकराने के दौरान लगाते हैं। इनकी सम्पूर्ण आणविक ऊर्जा, गतिज ऊर्जा होती है। गैस के अणुओं का कुल आयतन, उस पात्र के आयतन, जिसमें यह भरी है कि तुलना में नगण्य होता है। गैस में अन्तर-आणविक दूरी बहुत अधिक होती है, जिससे कि गैस के अणु उसके लिए उपलब्ध सम्पूर्ण स्थान में मुक...

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

Bhupal Nobles' University, Udaipur Convocation | भूपाल नोबल्स विश्वविद्यालय, उदयपुर दीक्षांत समारोह

भूपाल नोबल्स विश्वविद्यालय दीक्षांत समारोह महाराणा प्रताप स्टेशन रोड, सेवाश्रम सर्कल, उदयपुर। भूपाल नोबल्स विश्वविद्यालय उदयपुर द्वारा वर्ष 2018 से 2024 तक की स्नातक एवं स्नातकोत्तर परीक्षा में उत्तीर्ण एवं विद्यावाचस्पति (Ph.D.) उपाधिधारियों के लिए दीक्षान्त समारोह 27 मार्च 2025 गुरूवार को प्रातः 10:30 बजे आयोजित करने का निश्चित हुआ है। दीक्षान्त समारोह में 2020 से 2025 तक की विद्यावाचस्पति की उपाधियों तथा स्नातक एवं स्नातकोत्तर परीक्षाओं में वर्ष 2024 तक प्रथम स्थान प्राप्त करने वाले छात्रों को उपाधि एवं स्वर्ण पदक प्रदान किए जायेंगे। अतः जो उपाधिधारी उक्त समारोह में उपाधि प्राप्त करने के इच्छुक हों, वे समारोह में उपस्थित होने की लिखित सूचना के साथ स्नातक एवं स्नातकोत्तर प्रथम वरीयता प्राप्त छात्रों हेतु, पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) एवं विद्यावाचस्पति (Ph.D.), शोधार्थी पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) नकद अथवा डिमाण्ड ड्राफ्ट भूपाल नोबल्स विश्वविद्यालय, उदयपुर के नाम बनाकर कुलसचिव, भूपाल नोबल्स विश्वविद्यालय, उदयपुर को दिनांक 17.03.2025 तक ...