Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Poisson brackets | Identities of Poisson brackets | Classical Mechanics

Poisson brackets and its identities

Poisson brackets

  • A Poisson bracket is a special kind of relation between a pair of dynamical variables of any holonomic system, which is found to remain invariant under any canonical transformation.
  • They are used to construct new integrals of motion from the known integrals.
  • They are classical analogues of commutation relation between operators in quantum mechanics.
  • If u (p, q, t) and v (p, q, t) are two dynamical variables, then the Poisson bracket of these quantities with respect to canonical variables (p, q) is
                

Identities of Poisson brackets

  • [u, v] = – [v, u]


  • Thus the Poisson bracket of any two dynamical variables is anti-commutative.
  • If u = v, then
                
  • [u, u](p, q) = 0
  • [uu] = [vv] = 0

  • If c is any constant, then [cu, v] = [u, cv] = c [u, v]

  • Similarly [u, cv] = c [u, v]
  • ∴  [cu, v] = [u, cv] = c [u, v]

  • The Poisson brackets satisfy the distributive property
  • [u + v, w] = [u, w] + [v, w] and [u, v w] = [u, v]w + v[u, w]

  • Similarly [u, v w] = [u, v]w + v[u, w]

  • The partial derivative of Poisson bracket is

  • Jacobi identity of Poisson bracket is [u [v, w]] + [v [w, u]] + [w [u, v]] = 0

  • If F (w1, w2, …, wn) be a differentiable function of w1, w2, …, wn and all w’s be the function of (p, q, t), then

  • Let F (w1, w2) be a differentiable function of w1 and w2

To know about Poisson bracket and its identities please click on the link for English and  click on the link for Hindi

Comments

Popular posts from this blog

Cardinal points of a lens system | Optics | General theory of image formation

Cardinal points of a lens system There are total six cardinal points of a lens system, which are first and second focal points, first and second principal points, and first and second nodal points. First and second focal points (First and second focal planes) A pair of points lying on the principal axis and conjugate to points at infinity are known as focal points. First and Second focal points A point on the principal axis in the object space so that the rays starting (or appear to start) from it become parallel to the principal axis after refraction from the lens system is known as first focal point (F 1 ). A point on the principal axis in the image space so that the rays parallel to the principal axis in the image space focus (or appear to focus) at this point after refraction from the lens system is known as second focal point (F 2 ). First and Second focal planes The plane passing through the first focal point, and perpendicular to the optic axis is first f...

आवेश तथा उसके गुण | Charge and its properties in Hindi

आवेश तथा उसके गुण आवेश क्या है कोई नहीं जानता कि आवेश क्या है, केवल हम यह जानते हैं कि आवेश क्या कर सकता है तथा इसके गुण क्या हैं ? आवेश के प्रकार आवेश दो प्रकार के होते हैं, धनावेश तथा ऋणावेश। धनावेश प्रोटॉन के कारण होता है तथा ऋणावेश इलेक्ट्रॉन के कारण। तीसरे प्रकार का कोई आवेश ब्रहाण्ड में विद्यमान नहीं है। आवेश का क्वांटीकरण आवेश सदैव पैकेट के रूप में होता है, सतत्‌ नहीं। किसी वस्तु को दिया गया आवेश सदैव एक न्यूनतम आवेश का पूर्ण गुणज होता है यह न्यूनतम आवेश इलेक्ट्रॉन के आवेश के बराबर होता है, जिसका मान e = 1.6*10 -19 C होता है। q = ne,        यहां n = 0, 1, 2, ... आवेश संरक्षण का नियम आवेश को न तो उत्पन्न किया जा सकता है तथा न ही नष्ट किया जा सकता है, परन्तु इसे निकाय के एक भाग से दूसरे भाग में स्थानान्तरित किया जा सकता है। किसी विलगित निकाय का आवेश सदैव संरक्षित रहता है। Σq i = नियत,           यहां q i = iवे कण का आवेश आवेश के गुण स्थिर विद्युत आव...

Constraints | Classification and Properties of constraints | Classical mechanics

Constraints and its classification Constraints force Constraints are restrictions that limit the motion of the particles of a system. Physically constrained motion is realized by the forces which arise when the object in motion is in contact with the constraining surfaces or curves. These forces are called constraint forces. Properties of constraints force They are elastic in nature and appear at the surface of contact. They are so strong that they barely allow the body under consideration to deviate even slightly from a prescribed path or surface. This prescribed path or surface is called a constraint. The effect of constraint force is to keep the constraint relations satisfied. Classification of constraints           Scleronomic and Rheonomic This classification is based on time. The constraints are said to be scleronomic constraints, if the constraint relations do not explicitly depend on time. But if the constraint rela...