Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Constraints | Classification and Properties of constraints | Classical mechanics

Constraints and its classification

Constraints force

  • Constraints are restrictions that limit the motion of the particles of a system.
  • Physically constrained motion is realized by the forces which arise when the object in motion is in contact with the constraining surfaces or curves. These forces are called constraint forces.
  • Properties of constraints force

  • They are elastic in nature and appear at the surface of contact.
  • They are so strong that they barely allow the body under consideration to deviate even slightly from a prescribed path or surface. This prescribed path or surface is called a constraint.
  • The effect of constraint force is to keep the constraint relations satisfied.

    Classification of constraints

        Scleronomic and Rheonomic

  • This classification is based on time.
  • The constraints are said to be scleronomic constraints, if the constraint relations do not explicitly depend on time.
    • But if the constraint relations explicitly depend on time then the constraints are said to be rheonomic.

              Holonomic and Non-holonomic

      • This classification is based on velocity.
      • If the constraint relations do not depend on velocities then such type of constraints are known as holonomic constraints.
        • If the constraint relations depend on velocities then the constraints are said to be non-holonomic constraints.

                  Conservative and Dissipative

          • This classification is based on the work or total mechanical energy.
            • If the constraint forces do not do any mechanical work or if the total mechanical energy of the system is conserved during the constraint motion then such type of constraints are known as conservative constraints.
            • And if the constraint forces do mechanical work or the total mechanical energy of the system does not remain constant during the constraint motion then such type of constraints are known as dissipative constraints.

                    Bilateral and Unilateral

            • If the constraint relations are in the form of equation, not in the form of inequalities then the constraints are bilateral constraints.
            • It means in bilateral constraints both forward and backward motion are possible at any point on the constraint surface.
              • But if the constraint relations are in the form of inequalities, not in the form of equations then such type of constraints are known as unilateral constraints.
              • In unilateral constraints, at any point of the constraints surface only forward or backward motion is possible.

              To know about this lecture in more detail please visit on https://youtu.be/nlHucA1Ideo

              Comments

              Popular posts from this blog

              गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब | Kinetic theory of gases and Pressure of an ideal gas in Hindi | Thermodynamics

              गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब गैसों के गतिज सिद्धान्त की अभिधारणाएं एक गैस अत्यन्त छोटे, अदृश्य एवं पूर्णतः प्रत्यास्थ कणों से मिलकर बनी होती है, जो अणु   कहलाते हैं। एक शुद्ध गैस के सभी अणु समदृश होते हैं तथा ये सभी सम्भव दिशाओं में सभी सम्भव वेग से सतत्‌ रूप से गति करते रहते हैं। गैस जिस पात्र में भरी जाती है, वह उस पात्र की दीवारों पर दाब लगाती है। गैस के अणु किन्हीं दो क्रमागत टक्करों के मध्य सीधी रेखा में गति करते हैं। गैस के अणुओं का आकार किन्हीं दो क्रमागत टक्करों के मध्य तय की गई दूरी की तुलना में अनन्त सूक्ष्म होता है। ये टक्करें तात्क्षणिक होती हैं तथा टक्करों में गतिज ऊर्जा की कोई हानि नहीं होती है। अणु एक दूसरे पर कोई बल नहीं लगाते हैं। वे एक दूसरे पर बल केवल टकराने के दौरान लगाते हैं। इनकी सम्पूर्ण आणविक ऊर्जा, गतिज ऊर्जा होती है। गैस के अणुओं का कुल आयतन, उस पात्र के आयतन, जिसमें यह भरी है कि तुलना में नगण्य होता है। गैस में अन्तर-आणविक दूरी बहुत अधिक होती है, जिससे कि गैस के अणु उसके लिए उपलब्ध सम्पूर्ण स्थान में मुक...

              Cardinal points of a lens system | Optics | General theory of image formation

              Cardinal points of a lens system There are total six cardinal points of a lens system, which are first and second focal points, first and second principal points, and first and second nodal points. First and second focal points (First and second focal planes) A pair of points lying on the principal axis and conjugate to points at infinity are known as focal points. First and Second focal points A point on the principal axis in the object space so that the rays starting (or appear to start) from it become parallel to the principal axis after refraction from the lens system is known as first focal point (F 1 ). A point on the principal axis in the image space so that the rays parallel to the principal axis in the image space focus (or appear to focus) at this point after refraction from the lens system is known as second focal point (F 2 ). First and Second focal planes The plane passing through the first focal point, and perpendicular to the optic axis is first f...

              Gamma ray microscope method | Quantum mechanics | Physical basis of quantum mechanics

              Proof of uncertainty principle Gamma ray microscope method (Thought experiment) Let electron whose position (x) and momentum (p) is to be determined is initially at P From diffraction theory, the limit of resolution of microscope               Δx = λ / 2 sin θ Δx = Distance between two points upto which they can be seen separately. Δx = Maximum uncertainty in position of electron Since the wavelength of 𝛾-ray is small, so we choose it because it decreases Δx Let at least one 𝛾-ray photon be scattered by the electron into the microscope so that the electron is visible. In this process the frequency and wavelength of the scattered photon is changed and the electron suffers a Compton recoil by gaining the momentum. If λ = wavelength of the scattered photon, then the momentum of the scattered photon, p = h / λ Since the scattered photon can be scattered in any direction from PA to PB, so the x-compone...