Skip to main content

Bhupal Nobles' University, Udaipur Convocation | भूपाल नोबल्स विश्वविद्यालय, उदयपुर दीक्षांत समारोह

भूपाल नोबल्स विश्वविद्यालय दीक्षांत समारोह महाराणा प्रताप स्टेशन रोड, सेवाश्रम सर्कल, उदयपुर। भूपाल नोबल्स विश्वविद्यालय उदयपुर द्वारा वर्ष 2018 से 2024 तक की स्नातक एवं स्नातकोत्तर परीक्षा में उत्तीर्ण एवं विद्यावाचस्पति (Ph.D.) उपाधिधारियों के लिए दीक्षान्त समारोह 27 मार्च 2025 गुरूवार को प्रातः 10:30 बजे आयोजित करने का निश्चित हुआ है। दीक्षान्त समारोह में 2020 से 2025 तक की विद्यावाचस्पति की उपाधियों तथा स्नातक एवं स्नातकोत्तर परीक्षाओं में वर्ष 2024 तक प्रथम स्थान प्राप्त करने वाले छात्रों को उपाधि एवं स्वर्ण पदक प्रदान किए जायेंगे। अतः जो उपाधिधारी उक्त समारोह में उपाधि प्राप्त करने के इच्छुक हों, वे समारोह में उपस्थित होने की लिखित सूचना के साथ स्नातक एवं स्नातकोत्तर प्रथम वरीयता प्राप्त छात्रों हेतु, पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) एवं विद्यावाचस्पति (Ph.D.), शोधार्थी पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) नकद अथवा डिमाण्ड ड्राफ्ट भूपाल नोबल्स विश्वविद्यालय, उदयपुर के नाम बनाकर कुलसचिव, भूपाल नोबल्स विश्वविद्यालय, उदयपुर को दिनांक 17.03.2025 तक ...

Liquid helium as a Boson system in Hindi | बोसॉन निकाय के रूप में द्रव हीलियम | Statistical mechanics

बोसॉन निकाय के रूप में द्रव हीलियम

  • साधारण हीलियम में हीलियम के समस्थानिक 2He4 के लगभग सभी उदासीन परमाणु होते हैं।
  • चूंकि इन परमाणुओं का कुल कोणीय संवेग शून्य होता है, इसलिए ये बोस-आइन्सटीन सांख्यिकी का पालन करते हैं।

निम्न ताप पर हीलियम के गुणधर्म

  • वायुमण्डलीय दाब पर He ↑,  4.3K ताप पर (क्रांतिक ताप = 5.2K) अत्यन्त कम घनत्व के द्रव (ρ = 0.124 g/cm3) में परिवर्तित हो जाती है।
  • इसे लगभग 0.82K ताप तक और अधिक ठण्डा करने पर भी यह जमती (freeze) नहीं है तथा परम शून्य ताप (absolute zero temperature) तक भी यह द्रव हीलियम की अवस्था में बनी रहती है।
  • अतः ठोस हीलियम प्राप्त नहीं होती है, जब तक कि इसका बाह्य दाब कम से कम 23 वायुमण्डलीय नहीं कर दिया जाता है।
द्रव हीलियम का प्रावस्था संक्रमण
  • द्रव प्रावस्था में He4 के लिए एक अन्य संक्रमण प्रावस्था (λ-संक्रमण) होती है, जो द्रव अवस्था को दो प्रावस्थाओं HeI तथा HeII में विभाजित करती है।
  • जब हीलियम लगभग 2.2K ताप पर द्रवित होती है, तो इसका घनत्व अचानक अधिकतम हो जाता है, तत्पश्चात् कुछ घट जाता है।
  • हीलियम का क्रांतिक ताप 2.186K है तथा यह पदार्थ की एक नई अवस्था में संक्रमण दर्शाता है, जिसे द्रव HeII कहते हैं।
  • द्रव HeII में
    • ऊष्मा चालकता अत्यन्त अधिक होती है (लगभग 3 x 106 गुणा अधिक)।
    • ताप घटाने पर श्यानता गुणांक का मान धीरे-धीरे घटता है तथा परम शून्य ताप पर यह शून्य की ओर अग्रसर होता है।
    • 2.186K ताप पर विशिष्ट ऊष्मा वक्र असतत् है तथा इस वक्र की आकृति λ के समान है, इसलिए यह विशेष संक्रमण, λ-संक्रमण कहलाता है।
    • विच्छेदन तापमान (discontinuity temperature) 2.186K, λ-बिन्दु कहलाता है।

  • चूंकि प्रायोगिकतः λ-बिन्दु पर द्रव HeII अवस्था की कोई गुप्त ऊष्मा नहीं होती है, इसलिए कीसोन ने यह निष्कर्ष निकाला कि Tλ ताप पर HeI → HeII संक्रमण, द्वितीय क्रम का संक्रमण है तथा जैसे-जैसे दाब बढ़ता है, ताप घटता है।
  • λ-रेखा के नीचे, द्रव को दो-तरल प्रतिरूप (two fluid model) द्वारा वर्णित किया जा सकता है।
  • यह ऐसा व्यवहार करता है, जैसे इसके दो घटक हों-
  • एक सामान्य घटक, जो सामान्य तरल की भांति व्यवहार करता है, तथा
  • दूसरा शून्य श्यानता तथा शून्य एन्ट्राॅपी वाला अतितरल (super-fluid) घटक।
  • सम्बन्धित घनत्वों का अनुपात (ρn / ρ) तथा (ρs / ρ) ताप पर निर्भर करता है।
  • यहां ρns) सामान्य (अतितरल) घटक का घनत्व है, तथा ρ कुल घनत्व है।
  • ताप को घटाकर, अतितरल द्रव के घनत्व के अंश को शून्य (Tλ ताप पर) से एक (0K ताप पर) किया जा सकता है।
  • 1K ताप से नीचे के ताप पर He लगभग पूर्णतः अतितरल होती है।
  • चूंकि (ρn + ρs) का मान नियत है, इसलिए सामान्य घटक की घनत्व तरंग (density wave) निर्मित करना असम्भव है (और इसीलिए अतितरल घटक की भी), जो कि सामान्य ध्वनि तरंग (normal sound wave) की भांति होती है।
  • यह प्रभाव द्वितीय ध्वनि कहलाता है।

बोस आइंसटीन संधनन प्रतिरूप के आधार पर व्याख्या

लंदन सिद्धान्त

  • निम्न ताप पर द्रव हीलियम का व्यवहार बोस-आइंसटीन सांख्यिकी पर आधारित है।
  • लंदन ने यह सुझाव दिया कि HeII बोस-आइसंटीन गैस के समान है तथा इसका λ-संक्रमण, आदर्श गैस में बोस-आइंसटीन संघनन के समकक्ष है।
  • बोस-आइंसटीन गैस में अपभ्रष्टता, 1/D = (n/gsV) (2πmkT/h2)-3/2
  • चूंकि हीलियम परमाणु पर्याप्त हल्के होते हैं तथा द्रव का घनत्व (n/V) इसकी R.H.S. के अधिक मान होने के लिए पर्याप्त अधिक होता है तथा अपभ्रष्टता कम होती है, परन्तु द्रव के गैस की भांति व्यवहार करने के लिए यह मान पर्याप्त कम होता है।
  • लंदन ने इस λ-संक्रमण को बोस-आइंसटीन संघनन के परिमाण के फलस्वरूप समझाया तथा λ-बिन्दु एवं बोस-आइंसटीन ताप T0 में समानता बताई।
  • gs = (Zt)T = T0 = n / F3/2(0)
  • जहां Zt = (2πmkT / h2)3/2 V, स्थानान्तरीय विभाजन फलन है।
  • ∴ gs (2πmkT0 / h2)3/2 V = n / 2.612, जहां T0 = (h2/2πmk) (n / 2.612Vgs)2/3
  • द्रव अवस्था में एक ग्राम अणु हीलियम के लिए, V = 27.4 cm3, T0 = 3.12K.
  • λ-बिन्दु के लिए यह Tλ = 2.186K के अत्यन्त समीप है।
  • T0 तथा Tλ में यह समझौता (agreement) लंदन सिद्धान्त का समर्थन करता है।
  • Tλ से नीचे के ताप पर एन्ट्राॅपी 0.5K ताप पर शून्य हो जाती है, जिसे बोस-आइंसटीन संघनन द्वारा समझाया जा सकता है क्योंकि T < T0 पर अधिकतर कण तेजी से आद्य अवस्था में गिरते हैं, जो शून्य एन्ट्राॅपी की विशेषता है।

Comments

Popular posts from this blog

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

Jacobi-Poisson theorem | Poisson’s second theorem | Classical mechanics

Jacobi-Poisson theorem Poisson’s second theorem If u and v are any two constants of motion of any given system, then their Poisson bracket [ u , v ] are also a constant of motion. If u is a constants of motion, then [ u , H ] + ∂ u /∂t = 0 ⇒ [ u ,  H ] = - ∂ u /∂t. Given u and v are constant of motion               We have to prove [u, v] is also a constant of motion                     Proof By Jacobi identity This is mathematical form of  Jacobi-Poisson’s theorem or Poisson's second theorem . According to statement of Jacobi-Poisson theorem if  u and v are any two constants of motion of any given system, then their Poisson bracket [ u , v ] are also a constant of motion. To know about Jacobi-Poisson theorem of Poisson second theorem  click on the link for English  and  click on the link for Hindi...

Aplanatic points of a spherical refracting surface | Optics | General theory of image formation

Aplanatic points of a spherical refracting surface From Abbe’s sine condition                                  If this ratio is constant for a particular surface, then the surface is known as aplanatic surface . An aplanatic surface is a surface which forms a point image of a point object situated on its axis. The image formed by aplanatic surface is free from optical aberrations. Using sine law in △OPC                                                                            ...(1) Since refraction is taking place from denser to rarer, so from Snell's law              ...