Skip to main content

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल 30 नवम्बर को राजस्थान वन विभाग उदयपुर डिविजन तथा WWF-India उदयपुर डिविजन के सानिध्य में महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल की गई, जिसमें WWF-India के स्टेट काॅर्डिनेटर श्रीमान अरूण सोनी तथा वन विभाग कीे ओर से डाॅ. सतीश कुमार शर्मा, सेवानिवृत्त अधिकारी मौजूद थे। मुझे भी इस इको ट्रेल में जाने का सुअवसर प्राप्त हुआ, जो गोरीला व्यू पाॅइंट से बड़ी-लेक व्यू पाॅइंट तक की गई इसमें मुझे विज्ञान की एक नई शाखा के बारे में पता चला, जिसे टट्टी विज्ञान कहा जाता है। सुनने में आपको थोड़ा अजीब लगेगा, मुझे भी सुनकर हैरानी हुई, परन्तु वास्तव में एक ऐसा भी विज्ञान है, जिसके बारे में डाॅ. सतीश शर्मा ने बड़े ही विस्तार पूर्वक बताया कि किस प्रकार वनों में जानवरों की टट्टी देखकर यह पता लगाया जा सकता है कि यहां कौनसा जानवर आया था। जानवरों की टट्टी कितनी पुरानी है, वह गीली है या सूखी है। इसी के आधार पर उस विशेष जंगल में कौन-कौनसे जानवर विचरण करते हैं, उसके बारे में वन विज्ञान के कर्मचारी पता लगा लेते हैं। जानवरों की टट्टी का विश्लेषण करके यह पता लगा...

Liquid helium as a Boson system in Hindi | बोसॉन निकाय के रूप में द्रव हीलियम | Statistical mechanics

बोसॉन निकाय के रूप में द्रव हीलियम

  • साधारण हीलियम में हीलियम के समस्थानिक 2He4 के लगभग सभी उदासीन परमाणु होते हैं।
  • चूंकि इन परमाणुओं का कुल कोणीय संवेग शून्य होता है, इसलिए ये बोस-आइन्सटीन सांख्यिकी का पालन करते हैं।

निम्न ताप पर हीलियम के गुणधर्म

  • वायुमण्डलीय दाब पर He ↑,  4.3K ताप पर (क्रांतिक ताप = 5.2K) अत्यन्त कम घनत्व के द्रव (ρ = 0.124 g/cm3) में परिवर्तित हो जाती है।
  • इसे लगभग 0.82K ताप तक और अधिक ठण्डा करने पर भी यह जमती (freeze) नहीं है तथा परम शून्य ताप (absolute zero temperature) तक भी यह द्रव हीलियम की अवस्था में बनी रहती है।
  • अतः ठोस हीलियम प्राप्त नहीं होती है, जब तक कि इसका बाह्य दाब कम से कम 23 वायुमण्डलीय नहीं कर दिया जाता है।
द्रव हीलियम का प्रावस्था संक्रमण
  • द्रव प्रावस्था में He4 के लिए एक अन्य संक्रमण प्रावस्था (λ-संक्रमण) होती है, जो द्रव अवस्था को दो प्रावस्थाओं HeI तथा HeII में विभाजित करती है।
  • जब हीलियम लगभग 2.2K ताप पर द्रवित होती है, तो इसका घनत्व अचानक अधिकतम हो जाता है, तत्पश्चात् कुछ घट जाता है।
  • हीलियम का क्रांतिक ताप 2.186K है तथा यह पदार्थ की एक नई अवस्था में संक्रमण दर्शाता है, जिसे द्रव HeII कहते हैं।
  • द्रव HeII में
    • ऊष्मा चालकता अत्यन्त अधिक होती है (लगभग 3 x 106 गुणा अधिक)।
    • ताप घटाने पर श्यानता गुणांक का मान धीरे-धीरे घटता है तथा परम शून्य ताप पर यह शून्य की ओर अग्रसर होता है।
    • 2.186K ताप पर विशिष्ट ऊष्मा वक्र असतत् है तथा इस वक्र की आकृति λ के समान है, इसलिए यह विशेष संक्रमण, λ-संक्रमण कहलाता है।
    • विच्छेदन तापमान (discontinuity temperature) 2.186K, λ-बिन्दु कहलाता है।

  • चूंकि प्रायोगिकतः λ-बिन्दु पर द्रव HeII अवस्था की कोई गुप्त ऊष्मा नहीं होती है, इसलिए कीसोन ने यह निष्कर्ष निकाला कि Tλ ताप पर HeI → HeII संक्रमण, द्वितीय क्रम का संक्रमण है तथा जैसे-जैसे दाब बढ़ता है, ताप घटता है।
  • λ-रेखा के नीचे, द्रव को दो-तरल प्रतिरूप (two fluid model) द्वारा वर्णित किया जा सकता है।
  • यह ऐसा व्यवहार करता है, जैसे इसके दो घटक हों-
  • एक सामान्य घटक, जो सामान्य तरल की भांति व्यवहार करता है, तथा
  • दूसरा शून्य श्यानता तथा शून्य एन्ट्राॅपी वाला अतितरल (super-fluid) घटक।
  • सम्बन्धित घनत्वों का अनुपात (ρn / ρ) तथा (ρs / ρ) ताप पर निर्भर करता है।
  • यहां ρns) सामान्य (अतितरल) घटक का घनत्व है, तथा ρ कुल घनत्व है।
  • ताप को घटाकर, अतितरल द्रव के घनत्व के अंश को शून्य (Tλ ताप पर) से एक (0K ताप पर) किया जा सकता है।
  • 1K ताप से नीचे के ताप पर He लगभग पूर्णतः अतितरल होती है।
  • चूंकि (ρn + ρs) का मान नियत है, इसलिए सामान्य घटक की घनत्व तरंग (density wave) निर्मित करना असम्भव है (और इसीलिए अतितरल घटक की भी), जो कि सामान्य ध्वनि तरंग (normal sound wave) की भांति होती है।
  • यह प्रभाव द्वितीय ध्वनि कहलाता है।

बोस आइंसटीन संधनन प्रतिरूप के आधार पर व्याख्या

लंदन सिद्धान्त

  • निम्न ताप पर द्रव हीलियम का व्यवहार बोस-आइंसटीन सांख्यिकी पर आधारित है।
  • लंदन ने यह सुझाव दिया कि HeII बोस-आइसंटीन गैस के समान है तथा इसका λ-संक्रमण, आदर्श गैस में बोस-आइंसटीन संघनन के समकक्ष है।
  • बोस-आइंसटीन गैस में अपभ्रष्टता, 1/D = (n/gsV) (2πmkT/h2)-3/2
  • चूंकि हीलियम परमाणु पर्याप्त हल्के होते हैं तथा द्रव का घनत्व (n/V) इसकी R.H.S. के अधिक मान होने के लिए पर्याप्त अधिक होता है तथा अपभ्रष्टता कम होती है, परन्तु द्रव के गैस की भांति व्यवहार करने के लिए यह मान पर्याप्त कम होता है।
  • लंदन ने इस λ-संक्रमण को बोस-आइंसटीन संघनन के परिमाण के फलस्वरूप समझाया तथा λ-बिन्दु एवं बोस-आइंसटीन ताप T0 में समानता बताई।
  • gs = (Zt)T = T0 = n / F3/2(0)
  • जहां Zt = (2πmkT / h2)3/2 V, स्थानान्तरीय विभाजन फलन है।
  • ∴ gs (2πmkT0 / h2)3/2 V = n / 2.612, जहां T0 = (h2/2πmk) (n / 2.612Vgs)2/3
  • द्रव अवस्था में एक ग्राम अणु हीलियम के लिए, V = 27.4 cm3, T0 = 3.12K.
  • λ-बिन्दु के लिए यह Tλ = 2.186K के अत्यन्त समीप है।
  • T0 तथा Tλ में यह समझौता (agreement) लंदन सिद्धान्त का समर्थन करता है।
  • Tλ से नीचे के ताप पर एन्ट्राॅपी 0.5K ताप पर शून्य हो जाती है, जिसे बोस-आइंसटीन संघनन द्वारा समझाया जा सकता है क्योंकि T < T0 पर अधिकतर कण तेजी से आद्य अवस्था में गिरते हैं, जो शून्य एन्ट्राॅपी की विशेषता है।

Comments

Popular posts from this blog

MLSU Third year Physics Syllabus

M.L. SUKHADIA UNIVERSITY, UDAIPUR B.Sc. III Year Physics PAPER-I Quantum mechanics, and Atomic and Molecular Physics UNIT-I Introductory Schrodinger theory: Rise and fall of Plank-Bohr quantum theory, Duality of radiation and matter, de Broglie’s hypothesis, justification for the relation , experimental confirmation. Phase and group velocities of a wave: Formation of a wave packet, illustrations. Uncertainty principle relating to position and momentum, relating to energy and time, application of complementarity principle, photon interpretation of two slit interference, Einstein-de-Broglie relations as a link between particle and wave properties, general equation of wave propagation, propagation of matter waves, time dependent and time independent Schrodinger equations, physical meaning of ψ, conditions to be satisfied by Schrodinger equation as an operator equation. Postulatery approach to wave mechanics, operators, observable and measurements. Operators: Eig...

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब | Kinetic theory of gases and Pressure of an ideal gas in Hindi | Thermodynamics

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब गैसों के गतिज सिद्धान्त की अभिधारणाएं एक गैस अत्यन्त छोटे, अदृश्य एवं पूर्णतः प्रत्यास्थ कणों से मिलकर बनी होती है, जो अणु   कहलाते हैं। एक शुद्ध गैस के सभी अणु समदृश होते हैं तथा ये सभी सम्भव दिशाओं में सभी सम्भव वेग से सतत्‌ रूप से गति करते रहते हैं। गैस जिस पात्र में भरी जाती है, वह उस पात्र की दीवारों पर दाब लगाती है। गैस के अणु किन्हीं दो क्रमागत टक्करों के मध्य सीधी रेखा में गति करते हैं। गैस के अणुओं का आकार किन्हीं दो क्रमागत टक्करों के मध्य तय की गई दूरी की तुलना में अनन्त सूक्ष्म होता है। ये टक्करें तात्क्षणिक होती हैं तथा टक्करों में गतिज ऊर्जा की कोई हानि नहीं होती है। अणु एक दूसरे पर कोई बल नहीं लगाते हैं। वे एक दूसरे पर बल केवल टकराने के दौरान लगाते हैं। इनकी सम्पूर्ण आणविक ऊर्जा, गतिज ऊर्जा होती है। गैस के अणुओं का कुल आयतन, उस पात्र के आयतन, जिसमें यह भरी है कि तुलना में नगण्य होता है। गैस में अन्तर-आणविक दूरी बहुत अधिक होती है, जिससे कि गैस के अणु उसके लिए उपलब्ध सम्पूर्ण स्थान में मुक...

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...