Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Liquid helium as a Boson system in Hindi | बोसॉन निकाय के रूप में द्रव हीलियम | Statistical mechanics

बोसॉन निकाय के रूप में द्रव हीलियम

  • साधारण हीलियम में हीलियम के समस्थानिक 2He4 के लगभग सभी उदासीन परमाणु होते हैं।
  • चूंकि इन परमाणुओं का कुल कोणीय संवेग शून्य होता है, इसलिए ये बोस-आइन्सटीन सांख्यिकी का पालन करते हैं।

निम्न ताप पर हीलियम के गुणधर्म

  • वायुमण्डलीय दाब पर He ↑,  4.3K ताप पर (क्रांतिक ताप = 5.2K) अत्यन्त कम घनत्व के द्रव (ρ = 0.124 g/cm3) में परिवर्तित हो जाती है।
  • इसे लगभग 0.82K ताप तक और अधिक ठण्डा करने पर भी यह जमती (freeze) नहीं है तथा परम शून्य ताप (absolute zero temperature) तक भी यह द्रव हीलियम की अवस्था में बनी रहती है।
  • अतः ठोस हीलियम प्राप्त नहीं होती है, जब तक कि इसका बाह्य दाब कम से कम 23 वायुमण्डलीय नहीं कर दिया जाता है।
द्रव हीलियम का प्रावस्था संक्रमण
  • द्रव प्रावस्था में He4 के लिए एक अन्य संक्रमण प्रावस्था (λ-संक्रमण) होती है, जो द्रव अवस्था को दो प्रावस्थाओं HeI तथा HeII में विभाजित करती है।
  • जब हीलियम लगभग 2.2K ताप पर द्रवित होती है, तो इसका घनत्व अचानक अधिकतम हो जाता है, तत्पश्चात् कुछ घट जाता है।
  • हीलियम का क्रांतिक ताप 2.186K है तथा यह पदार्थ की एक नई अवस्था में संक्रमण दर्शाता है, जिसे द्रव HeII कहते हैं।
  • द्रव HeII में
    • ऊष्मा चालकता अत्यन्त अधिक होती है (लगभग 3 x 106 गुणा अधिक)।
    • ताप घटाने पर श्यानता गुणांक का मान धीरे-धीरे घटता है तथा परम शून्य ताप पर यह शून्य की ओर अग्रसर होता है।
    • 2.186K ताप पर विशिष्ट ऊष्मा वक्र असतत् है तथा इस वक्र की आकृति λ के समान है, इसलिए यह विशेष संक्रमण, λ-संक्रमण कहलाता है।
    • विच्छेदन तापमान (discontinuity temperature) 2.186K, λ-बिन्दु कहलाता है।

  • चूंकि प्रायोगिकतः λ-बिन्दु पर द्रव HeII अवस्था की कोई गुप्त ऊष्मा नहीं होती है, इसलिए कीसोन ने यह निष्कर्ष निकाला कि Tλ ताप पर HeI → HeII संक्रमण, द्वितीय क्रम का संक्रमण है तथा जैसे-जैसे दाब बढ़ता है, ताप घटता है।
  • λ-रेखा के नीचे, द्रव को दो-तरल प्रतिरूप (two fluid model) द्वारा वर्णित किया जा सकता है।
  • यह ऐसा व्यवहार करता है, जैसे इसके दो घटक हों-
  • एक सामान्य घटक, जो सामान्य तरल की भांति व्यवहार करता है, तथा
  • दूसरा शून्य श्यानता तथा शून्य एन्ट्राॅपी वाला अतितरल (super-fluid) घटक।
  • सम्बन्धित घनत्वों का अनुपात (ρn / ρ) तथा (ρs / ρ) ताप पर निर्भर करता है।
  • यहां ρns) सामान्य (अतितरल) घटक का घनत्व है, तथा ρ कुल घनत्व है।
  • ताप को घटाकर, अतितरल द्रव के घनत्व के अंश को शून्य (Tλ ताप पर) से एक (0K ताप पर) किया जा सकता है।
  • 1K ताप से नीचे के ताप पर He लगभग पूर्णतः अतितरल होती है।
  • चूंकि (ρn + ρs) का मान नियत है, इसलिए सामान्य घटक की घनत्व तरंग (density wave) निर्मित करना असम्भव है (और इसीलिए अतितरल घटक की भी), जो कि सामान्य ध्वनि तरंग (normal sound wave) की भांति होती है।
  • यह प्रभाव द्वितीय ध्वनि कहलाता है।

बोस आइंसटीन संधनन प्रतिरूप के आधार पर व्याख्या

लंदन सिद्धान्त

  • निम्न ताप पर द्रव हीलियम का व्यवहार बोस-आइंसटीन सांख्यिकी पर आधारित है।
  • लंदन ने यह सुझाव दिया कि HeII बोस-आइसंटीन गैस के समान है तथा इसका λ-संक्रमण, आदर्श गैस में बोस-आइंसटीन संघनन के समकक्ष है।
  • बोस-आइंसटीन गैस में अपभ्रष्टता, 1/D = (n/gsV) (2πmkT/h2)-3/2
  • चूंकि हीलियम परमाणु पर्याप्त हल्के होते हैं तथा द्रव का घनत्व (n/V) इसकी R.H.S. के अधिक मान होने के लिए पर्याप्त अधिक होता है तथा अपभ्रष्टता कम होती है, परन्तु द्रव के गैस की भांति व्यवहार करने के लिए यह मान पर्याप्त कम होता है।
  • लंदन ने इस λ-संक्रमण को बोस-आइंसटीन संघनन के परिमाण के फलस्वरूप समझाया तथा λ-बिन्दु एवं बोस-आइंसटीन ताप T0 में समानता बताई।
  • gs = (Zt)T = T0 = n / F3/2(0)
  • जहां Zt = (2πmkT / h2)3/2 V, स्थानान्तरीय विभाजन फलन है।
  • ∴ gs (2πmkT0 / h2)3/2 V = n / 2.612, जहां T0 = (h2/2πmk) (n / 2.612Vgs)2/3
  • द्रव अवस्था में एक ग्राम अणु हीलियम के लिए, V = 27.4 cm3, T0 = 3.12K.
  • λ-बिन्दु के लिए यह Tλ = 2.186K के अत्यन्त समीप है।
  • T0 तथा Tλ में यह समझौता (agreement) लंदन सिद्धान्त का समर्थन करता है।
  • Tλ से नीचे के ताप पर एन्ट्राॅपी 0.5K ताप पर शून्य हो जाती है, जिसे बोस-आइंसटीन संघनन द्वारा समझाया जा सकता है क्योंकि T < T0 पर अधिकतर कण तेजी से आद्य अवस्था में गिरते हैं, जो शून्य एन्ट्राॅपी की विशेषता है।

Comments

Popular posts from this blog

Calculus | Mathematics | BSc

Calculus Differential Calculus, Integral Calculus and Differential Equation Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria, Dr. Chandrapal Singh Chouhan ISBN : 978-93-94954-67-0 Price: Rs. 395.00  Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail : info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on Calculus by Saraswat This book includes the following topics  Pedal Equations and Derivative of the Length of an Arc Polar co-ordinates Relation between cartesian and polar co-ordinates Angle between radius vector and tangent Angle of intersection of two polar curves Polar tangent, subtangent, normal, subnormal and their lengths Perpendicular from pole to tangent and its length Pedal equation Differential coefficient of length of the arc When the equation of curve is in cartesian form (x, y); When the equation of curve is in ...

Advanced Calculus | Mathematics | BSc

Advanced Calculus Advanced Differential Calculus, Integral Calculus and Vector Calculus Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria ISBN : 978-81-7906-950-9 Price: Rs. 375.00 Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Advanced Calculus by Saraswat This book includes the following topics  Continuity Introduction Limit Left and right limit To find the R.H.L. and L.H.L. of a function Existence of limit)/li> Distinction between the value and limit of a function Some theorems based on limits Methods of finding the limit of functions Some standard limits Cauchy’s definition of continuity Continuity from left and right Continuity of a function in an interval Continuity in the open interval); Continuity in the closed in...

Gamma ray microscope method | Quantum mechanics | Physical basis of quantum mechanics

Proof of uncertainty principle Gamma ray microscope method (Thought experiment) Let electron whose position (x) and momentum (p) is to be determined is initially at P From diffraction theory, the limit of resolution of microscope               Δx = λ / 2 sin θ Δx = Distance between two points upto which they can be seen separately. Δx = Maximum uncertainty in position of electron Since the wavelength of 𝛾-ray is small, so we choose it because it decreases Δx Let at least one 𝛾-ray photon be scattered by the electron into the microscope so that the electron is visible. In this process the frequency and wavelength of the scattered photon is changed and the electron suffers a Compton recoil by gaining the momentum. If λ = wavelength of the scattered photon, then the momentum of the scattered photon, p = h / λ Since the scattered photon can be scattered in any direction from PA to PB, so the x-compone...