हार्मोनल परिवर्तन के कारण कम उम्र में लड़कियों में हो रहा शारीरिक परिवर्तन प्रदुषण और जंक फूड घटा रहा मुश्किल भरे दिन की उम्र लड़कियों में समय से पहले हार्मोनल चेंज के मामले बढ़ रहे हैं। शारीरिक बदलाव के लिए औसत उम्र 13 से 14 साल मानी जाती है, अब 8 से 11-12 साल में वजन बढ़ने जैसी समस्या आ रही है। कम उम्र में मुश्किल भरे दिनों का सामना करना पड़ रहा है। विशेषज्ञों की मानें तो समस्या प्रदुषण और जंक फूड के अत्यधिक सेवन से बढ़ रही है। शरीर में हार्मोनल परिवर्तन, किसी प्रकार की सिस्ट और ट्यूमर जैसे कारण सामने आ रहे हैं। इनके लिए मुख्य कारण निम्न हैं- लड़कियों में हार्मोनल परिवर्तन से पीरियड जल्दी आते हैं। आनुवंशिक समस्या इसके लिए जिम्मेदार हो सकती है। तनाव से भी हार्मोनल परिवर्तन होते हैं। आयरन तथा विटामिन-डी जैसे पोषण तत्वों की कमी भी हार्मोनल परिवर्तन के लिए जिम्मेदार हैं। प्रदुषण के सम्पर्क में रहने पर भी ये समस्या होती है। शरीर में कही भी सिस्ट या ट्यूमर होने पर भी ये सम्भव है। अगर 8 साल से 12 साल की उम्र के बीच किसी बालिका के शरीर में तेजी से परिवर्तन हो तो मुश्
Liquid helium as a Boson system in Hindi | बोसॉन निकाय के रूप में द्रव हीलियम | Statistical mechanics
बोसॉन निकाय के रूप में द्रव हीलियम
- साधारण हीलियम में हीलियम के समस्थानिक 2He4 के लगभग सभी उदासीन परमाणु होते हैं।
- चूंकि इन परमाणुओं का कुल कोणीय संवेग शून्य होता है, इसलिए ये बोस-आइन्सटीन सांख्यिकी का पालन करते हैं।
निम्न ताप पर हीलियम के गुणधर्म
- वायुमण्डलीय दाब पर He ↑, 4.3K ताप पर (क्रांतिक ताप = 5.2K) अत्यन्त कम घनत्व के द्रव (ρ = 0.124 g/cm3) में परिवर्तित हो जाती है।
- इसे लगभग 0.82K ताप तक और अधिक ठण्डा करने पर भी यह जमती (freeze) नहीं है तथा परम शून्य ताप (absolute zero temperature) तक भी यह द्रव हीलियम की अवस्था में बनी रहती है।
- अतः ठोस हीलियम प्राप्त नहीं होती है, जब तक कि इसका बाह्य दाब कम से कम 23 वायुमण्डलीय नहीं कर दिया जाता है।
द्रव हीलियम का प्रावस्था संक्रमण
- द्रव प्रावस्था में He4 के लिए एक अन्य संक्रमण प्रावस्था (λ-संक्रमण) होती है, जो द्रव अवस्था को दो प्रावस्थाओं HeI तथा HeII में विभाजित करती है।
- जब हीलियम लगभग 2.2K ताप पर द्रवित होती है, तो इसका घनत्व अचानक अधिकतम हो जाता है, तत्पश्चात् कुछ घट जाता है।
- हीलियम का क्रांतिक ताप 2.186K है तथा यह पदार्थ की एक नई अवस्था में संक्रमण दर्शाता है, जिसे द्रव HeII कहते हैं।
- द्रव HeII में
- ऊष्मा चालकता अत्यन्त अधिक होती है (लगभग 3 x 106 गुणा अधिक)।
- ताप घटाने पर श्यानता गुणांक का मान धीरे-धीरे घटता है तथा परम शून्य ताप पर यह शून्य की ओर अग्रसर होता है।
- 2.186K ताप पर विशिष्ट ऊष्मा वक्र असतत् है तथा इस वक्र की आकृति λ के समान है, इसलिए यह विशेष संक्रमण, λ-संक्रमण कहलाता है।
- विच्छेदन तापमान (discontinuity temperature) 2.186K, λ-बिन्दु कहलाता है।
- चूंकि प्रायोगिकतः λ-बिन्दु पर द्रव HeII अवस्था की कोई गुप्त ऊष्मा नहीं होती है, इसलिए कीसोन ने यह निष्कर्ष निकाला कि Tλ ताप पर HeI → HeII संक्रमण, द्वितीय क्रम का संक्रमण है तथा जैसे-जैसे दाब बढ़ता है, ताप घटता है।
- λ-रेखा के नीचे, द्रव को दो-तरल प्रतिरूप (two fluid model) द्वारा वर्णित किया जा सकता है।
- यह ऐसा व्यवहार करता है, जैसे इसके दो घटक हों-
- एक सामान्य घटक, जो सामान्य तरल की भांति व्यवहार करता है, तथा
- दूसरा शून्य श्यानता तथा शून्य एन्ट्राॅपी वाला अतितरल (super-fluid) घटक।
- सम्बन्धित घनत्वों का अनुपात (ρn / ρ) तथा (ρs / ρ) ताप पर निर्भर करता है।
- यहां ρn (ρs) सामान्य (अतितरल) घटक का घनत्व है, तथा ρ कुल घनत्व है।
- ताप को घटाकर, अतितरल द्रव के घनत्व के अंश को शून्य (Tλ ताप पर) से एक (0K ताप पर) किया जा सकता है।
- 1K ताप से नीचे के ताप पर He लगभग पूर्णतः अतितरल होती है।
- चूंकि (ρn + ρs) का मान नियत है, इसलिए सामान्य घटक की घनत्व तरंग (density wave) निर्मित करना असम्भव है (और इसीलिए अतितरल घटक की भी), जो कि सामान्य ध्वनि तरंग (normal sound wave) की भांति होती है।
- यह प्रभाव द्वितीय ध्वनि कहलाता है।
बोस आइंसटीन संधनन प्रतिरूप के आधार पर व्याख्या
लंदन सिद्धान्त
- निम्न ताप पर द्रव हीलियम का व्यवहार बोस-आइंसटीन सांख्यिकी पर आधारित है।
- लंदन ने यह सुझाव दिया कि HeII बोस-आइसंटीन गैस के समान है तथा इसका λ-संक्रमण, आदर्श गैस में बोस-आइंसटीन संघनन के समकक्ष है।
- बोस-आइंसटीन गैस में अपभ्रष्टता, 1/D = (n/gsV) (2πmkT/h2)-3/2
- चूंकि हीलियम परमाणु पर्याप्त हल्के होते हैं तथा द्रव का घनत्व (n/V) इसकी R.H.S. के अधिक मान होने के लिए पर्याप्त अधिक होता है तथा अपभ्रष्टता कम होती है, परन्तु द्रव के गैस की भांति व्यवहार करने के लिए यह मान पर्याप्त कम होता है।
- लंदन ने इस λ-संक्रमण को बोस-आइंसटीन संघनन के परिमाण के फलस्वरूप समझाया तथा λ-बिन्दु एवं बोस-आइंसटीन ताप T0 में समानता बताई।
- gs = (Zt)T = T0 = n / F3/2(0)
- जहां Zt = (2πmkT / h2)3/2 V, स्थानान्तरीय विभाजन फलन है।
- ∴ gs (2πmkT0 / h2)3/2 V = n / 2.612, जहां T0 = (h2/2πmk) (n / 2.612Vgs)2/3
- द्रव अवस्था में एक ग्राम अणु हीलियम के लिए, V = 27.4 cm3, T0 = 3.12K.
- λ-बिन्दु के लिए यह Tλ = 2.186K के अत्यन्त समीप है।
- T0 तथा Tλ में यह समझौता (agreement) लंदन सिद्धान्त का समर्थन करता है।
- Tλ से नीचे के ताप पर एन्ट्राॅपी 0.5K ताप पर शून्य हो जाती है, जिसे बोस-आइंसटीन संघनन द्वारा समझाया जा सकता है क्योंकि T < T0 पर अधिकतर कण तेजी से आद्य अवस्था में गिरते हैं, जो शून्य एन्ट्राॅपी की विशेषता है।
- To know more about this topic please click on the link https://youtu.be/fm_IM41XT40
Comments
Post a Comment