Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Concept of potential well | Oscillations and Waves

 Equilibrium and concept of potential well

  • In all conservative field, potential energy U = U (x, y, z)
  • Since force
                        
    • If particle moves only along x-axis, then force Fx = - (∂U/∂x)
    • Similarly Fy = - (∂U/∂y) and Fz = - (∂U/∂z)
    • Force = slope of tangent at any point of the curve
    • Since the tangent at P, Q, R and S are parallel to x-axis
      • These positions are known as equilibrium positions.
      • If a particle is slightly displaced from stable equilibrium position P, then it starts to oscillate between points A and B until it crosses point B.
      • P is the position having minimum potential energy and is called stable equilibrium.
      • The region of minimum potential energy bounded between points A and B is called  potential well .
      • The difference between the maximum and minimum potential energy of a potential well is called the  binding energy of potential well.
      • If the energy of particle is less than the B.E. of well, then it is always bound in the potential well and such state is called  bound state .
      • Let a particle be slightly displaced from its mean position P = (x = x0) then from Taylor sereis expansion, its potential energy at any point x
      • For stable equilibrium position P
      • If P lies at origin i.e., x0 = 0 and U(x0) = 0
      • For small displacement x3 → 0, x4 → 0, ...
                          
                              
            • In this position a curve between displacement and potential energy will be a  parabola and F ∝ x
            • Therefore the motion of particle in a parabolic potential well is always oscillatory and is simple harmonic .

              Comments

              Popular posts from this blog

              Advanced Calculus | Mathematics | BSc

              Advanced Calculus Advanced Differential Calculus, Integral Calculus and Vector Calculus Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria ISBN : 978-81-7906-950-9 Price: Rs. 375.00 Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Advanced Calculus by Saraswat This book includes the following topics  Continuity Introduction Limit Left and right limit To find the R.H.L. and L.H.L. of a function Existence of limit)/li> Distinction between the value and limit of a function Some theorems based on limits Methods of finding the limit of functions Some standard limits Cauchy’s definition of continuity Continuity from left and right Continuity of a function in an interval Continuity in the open interval); Continuity in the closed in...

              Calculus | Mathematics | BSc

              Calculus Differential Calculus, Integral Calculus and Differential Equation Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria, Dr. Chandrapal Singh Chouhan ISBN : 978-93-94954-67-0 Price: Rs. 395.00  Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail : info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on Calculus by Saraswat This book includes the following topics  Pedal Equations and Derivative of the Length of an Arc Polar co-ordinates Relation between cartesian and polar co-ordinates Angle between radius vector and tangent Angle of intersection of two polar curves Polar tangent, subtangent, normal, subnormal and their lengths Perpendicular from pole to tangent and its length Pedal equation Differential coefficient of length of the arc When the equation of curve is in cartesian form (x, y); When the equation of curve is in ...

              आवेश तथा उसके गुण | Charge and its properties in Hindi

              आवेश तथा उसके गुण आवेश क्या है कोई नहीं जानता कि आवेश क्या है, केवल हम यह जानते हैं कि आवेश क्या कर सकता है तथा इसके गुण क्या हैं ? आवेश के प्रकार आवेश दो प्रकार के होते हैं, धनावेश तथा ऋणावेश। धनावेश प्रोटॉन के कारण होता है तथा ऋणावेश इलेक्ट्रॉन के कारण। तीसरे प्रकार का कोई आवेश ब्रहाण्ड में विद्यमान नहीं है। आवेश का क्वांटीकरण आवेश सदैव पैकेट के रूप में होता है, सतत्‌ नहीं। किसी वस्तु को दिया गया आवेश सदैव एक न्यूनतम आवेश का पूर्ण गुणज होता है यह न्यूनतम आवेश इलेक्ट्रॉन के आवेश के बराबर होता है, जिसका मान e = 1.6*10 -19 C होता है। q = ne,        यहां n = 0, 1, 2, ... आवेश संरक्षण का नियम आवेश को न तो उत्पन्न किया जा सकता है तथा न ही नष्ट किया जा सकता है, परन्तु इसे निकाय के एक भाग से दूसरे भाग में स्थानान्तरित किया जा सकता है। किसी विलगित निकाय का आवेश सदैव संरक्षित रहता है। Σq i = नियत,           यहां q i = iवे कण का आवेश आवेश के गुण स्थिर विद्युत आव...