Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Calculus | Mathematics | BSc

Calculus

Differential Calculus, Integral Calculus and Differential Equation





Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria, Dr. Chandrapal Singh Chouhan

ISBN : 978-93-94954-67-0

Price: Rs. 395.00 

Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi

E-mail : info@sacademy.co.in

Phone: +91 9664392614

To buy this book click on Calculus by Saraswat

This book includes the following topics 

Pedal Equations and Derivative of the Length of an Arc

  • Polar co-ordinates
  • Relation between cartesian and polar co-ordinates
  • Angle between radius vector and tangent
  • Angle of intersection of two polar curves
  • Polar tangent, subtangent, normal, subnormal and their lengths
  • Perpendicular from pole to tangent and its length
  • Pedal equation
  • Differential coefficient of length of the arc
  • When the equation of curve is in cartesian form (x, y); When the equation of curve is in polar form (r, ፀ)
  • Other formula

Mean Value Theorem

  • Introduction
  • Rolle’s Theorem
  • Geometrical interpretation of Rolle’s theorem
  • Algebraic interpretation of Rolle’s theorem
  • Another form of Rolle’s theorem
  • Lagrange’s mean value theorem
  • Another form of Lagrange’s mean value theorem
  • Geometrical interpretation of Lagrange’s mean value theorem
  • Some important deduction from Lagrange’s mean value theorem
  • Cauchy’s mean value theorem or first mean value theorem
  • Another useful form of Cauchy’s mean value theorem
  • General mean value theorem
  • Second mean value theorem
  • Generalised mean value theorem or Taylor’s theorem with Lagrange’s form of remainder
  • Taylor’s theorem with Cauchy’s form of remainder
  • Taylor’s theorem with Schlömilch and Roche form of remainder
  • Maclaurin’s theorem with Schlömilch and Roche form of remainder
  • Power series
  • Taylor series
  • Maclaurin’s series
  • Power series expansion of some useful basic functions

Asymptotes

  • Introduction
  • Asymptote
  • Condition for asymptote
  • Asymptotes of general algebraic form of the curve
  • Number of asymptotes of a curve
  • Asymptotes parallel to the direction axes
  • Alternative method for finding asymptotes
  • Intersection of curve and its asymptotes
  • Position of curve with respect to asymptote

Curvatures

  • Introduction)
  • Some important definitions
  • A formula for radius of curvature)
  • Cartesian formula for radius of curvature
  • Parametric formula for radius of curvature
  • Polar formula for radius of curvature
  • Pedal formula for radius of curvature
  • Tangential polar formula for radius of curvature
  • Miscellaneous formula for radius of curvature
  • Coordinate of centre of curvature
  • Length of chord of curvatures

Curve Tracing

  • Introduction
  • Concavity and convexity
  • Test of concavity or convexity with respect to coordinate axes
  • Point of inflexion
  • Point of undulation
  • Singular points
  • Multiple points
  • Types of double points
  • Types of cusp
  • Species of cusp
  • Necessary condition for the existence of double point
  • Curve tracing
  • Working method for tracing of cartesian curve
  • Working method for tracing of polar curves
  • Working method for tracing of parametric curve

Beta and Gamma Function

  • Beta function
  • Properties of beta function
  • Gamma function
  • Recurrence formula of gamma function
  • Relation between beta and gamma functions
  • Gamma formula
  • Duplication formula
  • Properties of gamma function

Quadrature

  • Introduction
  • Area bounded by cartesian curve and direction axes
  • Common area of two cartesian curve
  • Area and mass by double integration
  • Area bounded by polar curves and radius vectors
  • Area of closed curve

Rectification

  • Introduction
  • Length of arc of different form of curves
  • Intrinsic equation of a curve
  • To find the intrinsic equation of curve
  • Length of arc of an evolute

Differential Equations of First Order & First Degree

  • Differential equation
  • Ordinary and partial differential equations
  • Order and degree of a differential equation
  • Solution of differential equation
  • Equation of the first order and first degree
  • Equations in which variables are separable
  • Homogeneous differential equation
  • Equations reducible to a homogeneous equation
  • Linear differential equation
  • Bernoulli’s differential equation reducible to the linear form
  • Exact differential equation
  • Method of finding out the general solution of an exact differential equation
  • Equation reducible to an exact differential equation
  • Methods of finding out the integrating factors
  • By inspection; Rules of finding the integrating factors

Differential Equations of First Order & Higher Degree

  • Introduction
  • Equation solvable for p
  • Equation solvable for y
  • Lagrange’s equation
  • Equation solvable for x
  • Clairaut’s equation
  • Singular solutions
  • Geometrical meaning of singular solutions; Method of finding singular solutions in general case
  • Extraneous loci and its type
  • Procedure of finding the singular solutions and extraneous loci

Geometrical Meaning of Differential Equation

  • Introduction
  • Geometrical meaning of differential equation
  • Family of curves
  • Equation of family of curve
  • Trajectories
  • Orthogonal trajectory; Self orthogonal family of curves
  • Equation of orthogonal trajectory of a family of curves
  • Applications of orthogonal trajectories

Linear Differential Equations with Constant Coefficient

  • Introduction
  • General form of linear differential equation
  • Differential operator
  • Inverse operator
  • Homogeneous and non-homogeneous linear differential equation
  • Complementary function and particular integral
  • Method of finding complementary function
  • When all roots of auxiliary equations are different; When roots of auxiliary equation are same; When the roots of auxiliary equation are complex; When the roots of auxiliary equation are complex and same; When the roots of auxiliary equation are surd roots; When the roots of auxiliary equation are surd and equal
  • General method for finding particular integral
  • Short method for finding particular integral
  • Short method for finding P.I., when Q = eax
  • Short method for finding P.I., when Q = sin ax or cos ax
  • Short method for P.I., when Q = xn
  • Short method of P.I., when Q = eax.v, where v is any function of x
  • Short method of P.I., when Q = x.v, where v is any function of x

Homogeneous Linear Differential Equation

  • Introduction
  • Method for solving homogeneous linear differential equation
  • Methods for finding the complementary function
  • Alternative method of finding homogeneous linear differential equations
  • Differential equations reducible to homogeneous linear form

Comments

Popular posts from this blog

B.N.U. First Semester Physics Syllabus

B.N. UNIVERSITY, UDAIPUR B.Sc. I Semester Physics PHYS MJ 111T: MECHANICS UNIT-I Laws of motion and Frame of reference: Laws of motion, conservation of momentum and energy, Co-ordinate frames, inertial and non-inertial frame of reference, Galilean transformation and invariance, fictitious force, centrifugal force, transformation of coordinate, velocity, acceleration and displacement in a rotating frame of reference, uniformly rotating frame of reference, Coriolis force, effect of centrifugal and Coriolis force due to earth’s rotation, Foucault’s pendulum. UNIT-II Gravitational Field and Potential: Newton’s universal law of gravitation, gravitational field intensity, gravitational potential due to spherical shell and solid sphere, gravitational potential energy, Laplace and Poisson’s equations, Gauss’s law, gravitational self-energy of a uniform sphere. Dynamics of System of Particles: Centre of mass, calculation of centre of mass of regular rigid bodies ...

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब | Kinetic theory of gases and Pressure of an ideal gas in Hindi | Thermodynamics

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब गैसों के गतिज सिद्धान्त की अभिधारणाएं एक गैस अत्यन्त छोटे, अदृश्य एवं पूर्णतः प्रत्यास्थ कणों से मिलकर बनी होती है, जो अणु   कहलाते हैं। एक शुद्ध गैस के सभी अणु समदृश होते हैं तथा ये सभी सम्भव दिशाओं में सभी सम्भव वेग से सतत्‌ रूप से गति करते रहते हैं। गैस जिस पात्र में भरी जाती है, वह उस पात्र की दीवारों पर दाब लगाती है। गैस के अणु किन्हीं दो क्रमागत टक्करों के मध्य सीधी रेखा में गति करते हैं। गैस के अणुओं का आकार किन्हीं दो क्रमागत टक्करों के मध्य तय की गई दूरी की तुलना में अनन्त सूक्ष्म होता है। ये टक्करें तात्क्षणिक होती हैं तथा टक्करों में गतिज ऊर्जा की कोई हानि नहीं होती है। अणु एक दूसरे पर कोई बल नहीं लगाते हैं। वे एक दूसरे पर बल केवल टकराने के दौरान लगाते हैं। इनकी सम्पूर्ण आणविक ऊर्जा, गतिज ऊर्जा होती है। गैस के अणुओं का कुल आयतन, उस पात्र के आयतन, जिसमें यह भरी है कि तुलना में नगण्य होता है। गैस में अन्तर-आणविक दूरी बहुत अधिक होती है, जिससे कि गैस के अणु उसके लिए उपलब्ध सम्पूर्ण स्थान में मुक...

Constraints | Classification and Properties of constraints | Classical mechanics

Constraints and its classification Constraints force Constraints are restrictions that limit the motion of the particles of a system. Physically constrained motion is realized by the forces which arise when the object in motion is in contact with the constraining surfaces or curves. These forces are called constraint forces. Properties of constraints force They are elastic in nature and appear at the surface of contact. They are so strong that they barely allow the body under consideration to deviate even slightly from a prescribed path or surface. This prescribed path or surface is called a constraint. The effect of constraint force is to keep the constraint relations satisfied. Classification of constraints           Scleronomic and Rheonomic This classification is based on time. The constraints are said to be scleronomic constraints, if the constraint relations do not explicitly depend on time. But if the constraint rela...