भूपाल नोबल्स विश्वविद्यालय दीक्षांत समारोह महाराणा प्रताप स्टेशन रोड, सेवाश्रम सर्कल, उदयपुर। भूपाल नोबल्स विश्वविद्यालय उदयपुर द्वारा वर्ष 2018 से 2024 तक की स्नातक एवं स्नातकोत्तर परीक्षा में उत्तीर्ण एवं विद्यावाचस्पति (Ph.D.) उपाधिधारियों के लिए दीक्षान्त समारोह 27 मार्च 2025 गुरूवार को प्रातः 10:30 बजे आयोजित करने का निश्चित हुआ है। दीक्षान्त समारोह में 2020 से 2025 तक की विद्यावाचस्पति की उपाधियों तथा स्नातक एवं स्नातकोत्तर परीक्षाओं में वर्ष 2024 तक प्रथम स्थान प्राप्त करने वाले छात्रों को उपाधि एवं स्वर्ण पदक प्रदान किए जायेंगे। अतः जो उपाधिधारी उक्त समारोह में उपाधि प्राप्त करने के इच्छुक हों, वे समारोह में उपस्थित होने की लिखित सूचना के साथ स्नातक एवं स्नातकोत्तर प्रथम वरीयता प्राप्त छात्रों हेतु, पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) एवं विद्यावाचस्पति (Ph.D.), शोधार्थी पंजीकरण शुल्क ₹500 व उपाधि शुल्क ₹5000 (कुल ₹5500) नकद अथवा डिमाण्ड ड्राफ्ट भूपाल नोबल्स विश्वविद्यालय, उदयपुर के नाम बनाकर कुलसचिव, भूपाल नोबल्स विश्वविद्यालय, उदयपुर को दिनांक 17.03.2025 तक ...
वर्ण विपथन तथा इसको कम करना
विपथन
- गोलीय सतह तथा लेन्स दिए गए बिम्ब का प्रतिबिम्ब प्राप्त करने में प्रयुक्त होते हैं।
- यदि हम सरल समीकरणों की सहायता से प्रतिबिम्ब की स्थिति, आकार तथा उसका प्रकार ज्ञात करें तो प्रतिबिम्ब में कई दोष या विकार होते हैं।
- लेन्स या लेन्सों के संयोजन से प्राप्त प्रतिबिम्ब में दोष, विपथन कहलाते हैं।
वर्ण विपथन या रंग दोष
- जब किसी प्रिज्म पर श्वेत प्रकाश आपतित होता है, तो प्रिज्म से अपवर्तन के पश्चात् यह सात रंगों में विभक्त हो जाता है।
- इसी प्रकार यदि श्वेत प्रकाश किसी लेन्स पर आपतित होता है, तो लेन्स से अपवर्तन के पश्चात् हमें विभिन्न रंगों के प्रतिबिम्ब प्राप्त होते हैं। इस प्रकार लेन्स का यह दोष वर्ण विपथन या रंग दोष कहलाता है।
- चूंकि एक लेन्स कई प्रिज्मों के संयोजन से मिलकर बना माना जा सकता है तथा उनके अपवर्तन कोण जैसे—जैसे हम लेन्स के केन्द्र से किनारे की ओर जाते हैं वैसे—वैसे घटते जाते हैं।
कारण
- लेन्स के पदार्थ का अपवर्तनांक विभिन्न रंगों के लिए या विभिन्न तरंगदैर्ध्यों वाले प्रकाश के लिए अलग—अलग होता है।
- विभिन्न तरंगदैर्ध्यों वाले प्रकाश अलग—अलग बिन्दुओं पर फोकसित होते हैं तथा अलग—अलग स्थितियों पर प्रतिबिम्ब बनाते हैं।
- कॉशी के सम्बन्ध से µ = A + B/λ2
- ∵ λR > λV ⇒ µR < µV
- ∵ f ∝ 1/µ ⇒ fR > fV
- चूंकि लाल रंग की फोकस दूरी अधिकतम होती है, इसलिए लाल रंग का विचलन न्यूनतम होता है तथा बेंगनी रंग का विचलन अधिकतम होता है।
- (fr ー fv) अक्षीय या अनुदैर्ध्य वर्ण विपथन का मापन है।
अनुदैर्ध्य वर्ण विपथन
- लेन्स की लाल रंग की फोकस दूरी तथा बेंगनी रंग की फोकस दूरियों का अन्तर, अक्षीय या अनुदैर्ध्य वर्ण विपथन का मापन प्रदान करता है।
- परन्तु लेन्स के पदार्थ की विपेक्षण क्षमता ω होती है, इसलिए
- यदि fy माध्य रंग की फोकस दूरी हो, तो fy² = fv fr
- fr − fv = ωfy
- अतः अनुदैर्ध्य वर्ण विपथन, लेन्स के पदार्थ की विक्षेपण क्षमता तथा माध्य रंग के किरण की फोकस दूरी के गुणनफल के बराबर होती है।
अनुप्रस्थ वर्ण विपथन
- यदि एक श्वेत प्रकाश बिम्ब, लेन्स के अक्ष के अभिलम्ब स्थित हो, तो इसका प्रतिबिम्ब अक्ष के अभिलम्ब बनता है।
- चूंकि अलग-अलग रंगों के लिए लेन्स का अपवर्तनांक अलग-अलग होता है, अतः अक्ष के लम्बवत् बनने वाले प्रतिबिम्ब अलग-अलग रंगों के तथा अलग-अलग आकार के प्राप्त होते हैं।
- यदि I = प्रतिबिम्ब का आकार, O = बिम्ब का आकार, u = लेन्स के प्रकाशीय केन्द्र से बिम्ब की दूरी तथा v = लेन्स के प्रकाशीय केन्द्र से बिम्ब की दूरी प्रतिबिम्ब की दूरी हो, तो
- आवर्धन m = I/O = v/u
यहां
- AB श्वेत बिम्ब है।
- AvBv दिए गए श्वेत बिम्ब से प्राप्त बेंगनी रंग का प्रतिबिम्ब है।
- ArBr दिए गए श्वेत बिम्ब से प्राप्त लाल रंग का प्रतिबिम्ब है।
- ArBr ー AvBv अनुप्रस्थ वर्ण विपथन का मापन है।
- Mr ー Mv आवर्धन के पदों में अनुप्रस्थ वर्ण विपथन है।
- यदि लाल रंग के प्रतिबिम्ब का आकार बेंगनी रंग के प्रतिबिम्ब से अधिक हो (Mr > Mv), तो अनुप्रस्थ वर्ण विपथन धनात्मक कहलाता है (उत्तल लेन्स के कारण विपथन)।
- यदि Mr < Mv हो, तो अनुप्रस्थ वर्ण विपथन ऋणात्मक कहलाता है (अवतल लेन्स के कारण विपथन)।
विश्लेषणात्मक विधि
- तरंगदैर्ध्य के साथ प्रतिबिम्ब के आकार में परिवर्तन, वर्ण विपथन कहलाता है।
- यदि x = अक्षीय दूरी, तथा y = अनुप्रस्थ दूरी हो, तो
- अनुदैर्ध्य वर्ण विपथन = dx/dλ
- अनुप्रस्थ वर्ण विपथन = dy/dλ
अवर्णक लेन्स या अवर्णकता
- वर्ण विपथन को न्यूनतम करने की प्रक्रिया अवर्णकता कहलाती है।
- अवर्णकता प्राप्त करने की दो विधियां हैं ー
- दो लेन्स को एक दूसरे के सम्पर्क में रखकर, जिनमें से एक उत्तल लेन्स (क्राउन कांच) तथा दूसरा अवतल लेन्स (फ्लिंट कांच) हो, द्वारा अवर्णक लेन्स प्राप्त करना।
- एक ही पदार्थ से निर्मित दो उत्तल लेन्सों को एक दूसरे से उपयुक्त दूरी पर रखकर।
दो लेन्सों के सम्पर्क से अवर्णक युग्मन
- दो या दो से अधिक लेन्सों के युग्मन को इस प्रक्रार व्यवस्थित किया जाता है कि इससे प्राप्त प्रतिबिम्ब वर्ण विपथन से मुक्त हो, अवर्णक लेन्स कहलाता है।
- उत्तल लेन्स के लिए, fv < fr तथा अवतल लेन्स के लिए, fv > fr
- उत्तल लेन्स का वर्ण विपथन धनात्मक होता है।
- अवतल लेन्स का वर्ण विपथन ऋणात्मक होता है।
- वर्ण विपथन से मुक्त प्रतिबिम्ब प्राप्त करने के लिए दो लेन्सों (एक उत्तल तथा दूसरा अवतल) को युग्मित किया जाता है। इस प्रकार की व्यवस्था अवर्णक द्विक (achromatic doublet) कहलाती है।
- अवर्णक द्विक के लिए हम उच्च शक्ति (या निम्न फोकस दूरी) के क्राउन कांच तथा निम्न शक्ति (या उच्च फोकस दूरी) के फ्लिंट कांच का प्रयोग करते हैं।
- दोनों लेन्सों की फोकस दूरियों को इस प्रकार समंजित किया जाता है कि बेंगनी रंग के प्रकाश की फोकस दूरी, लाल रंग के प्रकाश की फोकस दूरी पर अध्यारोपित होती है।
- चूंकि ω1 / ω2 = ー f1 / f2
- तथा ω1 तथा ω2 दोनों धनात्मक हैं, अतः f1 तथा f2 विपरीत चिन्ह के होने चाहिए अर्थात् यदि एक लेन्स उत्तल हो, तो दूसरा अवतल होना चाहिए।
- यदि ω1 = ω2 हो, तो
- 1/ f1 + 1/f2 = 0 ⇒ 1/F = 0 ⇒ F = ∞
- इस प्रकार संयोजन किसी लेन्स की भांति व्यवहार न करके एक सरल कांच की पट्टिका की भांति व्यवहार करता है, इसलिए लेन्स अलग—अलग पदार्थ से निर्मित होन चाहिए, जिससे कि ω1 ≠ ω2 हो।
- यदि संयोजन अभिसारी लेन्स की भांति व्यवहार करता हो, तो उत्तल लेन्स की शक्ति, अवतल लेन्स की शक्ति से अधिक होनी चाहिए या f1 < f2 होना चाहिए, अतः ω1 < ω2 इसलिए उत्तल लेन्स क्राउन कांच से निर्मित तथा अवतल लेन्स फ्लिंट कांच से निर्मित होना चाहिए।
- जो शर्त हम यहां प्रयोग कर रहे हैं वह केवल अनुदैर्ध्य वर्ण विपथन के विलोपन के लिए है, इसकी सहायता से अनुप्रस्थ वर्ण विपथन का विलोपन नहीं किया जा सकता है।
- यदि कई लेन्सों के संयोजन से अवर्णक लेन्स बनाया जाता है, तो
- ω1 / f1 + ω2 / f2 + ω3 / f3 + ...= 0 या Σ (ω / f ) = 0
किसी दूरी पर स्थित दो लेन्सों के अवर्णकता की शर्त
- यदि दोनों लेन्स एक ही पदार्थ सेे निर्मित हों, तो ω1 = ω2 = ω
- d = (f1 + f2) / 2
- चूंकि यह सम्बन्ध ω से मुक्त है, इसलिए सभी रंगों के लिए संयोजन का मान समान होता है।
- चूंकि d का मान कभी भी ऋणात्मक नहीं होता है, इसलिए (f1 + f2) > 0, अतः दोनों लेन्स या तो उत्तल होने चाहिए या अधिक फोकस दूरी वाला उत्तल होना चाहिए।
To know more about this lecture please visit on https://youtu.be/F2pVIKRM9Dg
Comments
Post a Comment