Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Liquid helium as a Boson system | Statistical physics

Liquid helium as a Boson system

  • Ordinary helium consists almost entirely of neutral atom of the isotope 2He4.
  • Since the total angular momentum of these atom is zero, so it follow the Bose-Einstein statistics.

Properties of helium at low temperature

  • The helium gas at atmospheric pressure condenses at 4.3K temperature into a liquid helium having critical temperature 5.2K, and the density of this liquid helium is very low (ρ = 0.124 g/cm3).
  • On further cooling the helium to about 0.82K, it does not freeze, and the liquid helium remains into liquid state up to absolute zero temperature i.e., T = 0K.
  • It means the helium does not solidified at atmospheric pressure. To get the solid state of helium, it is subjected to an external pressure of at least 23atm.
Phase transition of liquid He
  • For He4 in liquid phase, there is another phase transition (λ-transition), which divides the liquid state into two phases HeI and HeII.
  • While liquefying He at about 2.2K, density become an abrupt maximum and then decreases slightly.
  • Therefore the critical temperature is at 2.186K and it represents a transition to a new state of matter, known as liquid HeII.
  • In liquid HeII
    • Heat conductivity is very large (order of 3 x 106 times greater).
    • Coefficient of viscosity is gradually decreases with decrease in temperature and approaching to zero at absolute zero temperature.
    • The specific heat curve is discontinuous at 2.186K and the shape of this curve is same as letter λ, and therefore this particular transition is known as λ-transition.
    • The discontinuity temperature 2.186K is called λ-point.

  • Since experimentally at λ-point, liquid HeII state has no latent heat so Keeson concluded that transition HeI → HeII at Tλ is a second order transition and as the pressure increases, the temperature decreases.
  • Below the λ-line, liquid can be described by the two-fluid model.
  • It behaves as if it consists of two components:
  • A normal component, which behaves like a normal fluid.
  • A super-fluid component with zero viscosity and zero entropy.
  • The ratio of the respective densities (ρn / ρ) and (ρs / ρ) depend on the temperatures.
  • Here ρns) is the density of normal (super-fluid) component, and ρ is the total density.
  • By lowering the temperature, the fraction of the super-fluid density increases from 0 at Tλ to 1 at 0K.
  • Below 1K, the He is almost completely super-fluid.
  • Since ρn + ρs is constant, so it is impossible to create density waves of the normal component (and hence of the super-fluid component), which is similar to ordinary sound waves.
  • This effect is known as second sound.

Explanation based on Bose-Einstein condensation model

London’s theory

  • The behaviour of liquid He at low temperature is based on B-E statistics.
  • London suggested that HeII is similar to B.E. gas and its λ-transition is the counter part of Bose-Einstein condensation in the ideal gas.
  • In Bose-Einstein gas, degeneracy 1/D = (n/gsV) (2πmkT/h2)-3/2
  • Since the helium atoms are light enough and the density (n/V) of the liquid is sufficiently high for the R.H.S. to be large and degeneracy to be small, but it is low enough for the liquid to behave as a gas.
  • London concluded this λ-transition as a result of B.E. condensation and gave a similarity between λ-point and B.E. temperature T0.
  • gs = (Zt)T = T0 = n / F3/2(0)
  • Where translational partition function Zt = (2πmkT / h2)3/2 V
  • ∴ gs (2πmkT0 / h2)3/2 V = n / 2.612, where T0 = (h2/2πmk) (n / 2.612Vgs)2/3
  • For a gram molecule of helium in liquid state, V = 27.4 cm3, T0 = 3.12K.
  • It is close to Tλ = 2.186K for the λ-point.
  • This agreement between T0 and Tλ favours the London explanation.
  • The decrease in entropy below Tλ being zero at 0.5K is explained by B.E. condensation because at T = T0 most of the particles rapidly fall into the ground state, which is characterized by zero entropy.

Comments

Popular posts from this blog

Advanced Calculus | Mathematics | BSc

Advanced Calculus Advanced Differential Calculus, Integral Calculus and Vector Calculus Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria ISBN : 978-81-7906-950-9 Price: Rs. 375.00 Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Advanced Calculus by Saraswat This book includes the following topics  Continuity Introduction Limit Left and right limit To find the R.H.L. and L.H.L. of a function Existence of limit)/li> Distinction between the value and limit of a function Some theorems based on limits Methods of finding the limit of functions Some standard limits Cauchy’s definition of continuity Continuity from left and right Continuity of a function in an interval Continuity in the open interval); Continuity in the closed in...

Calculus | Mathematics | BSc

Calculus Differential Calculus, Integral Calculus and Differential Equation Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria, Dr. Chandrapal Singh Chouhan ISBN : 978-93-94954-67-0 Price: Rs. 395.00  Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail : info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on Calculus by Saraswat This book includes the following topics  Pedal Equations and Derivative of the Length of an Arc Polar co-ordinates Relation between cartesian and polar co-ordinates Angle between radius vector and tangent Angle of intersection of two polar curves Polar tangent, subtangent, normal, subnormal and their lengths Perpendicular from pole to tangent and its length Pedal equation Differential coefficient of length of the arc When the equation of curve is in cartesian form (x, y); When the equation of curve is in ...

आवेश तथा उसके गुण | Charge and its properties in Hindi

आवेश तथा उसके गुण आवेश क्या है कोई नहीं जानता कि आवेश क्या है, केवल हम यह जानते हैं कि आवेश क्या कर सकता है तथा इसके गुण क्या हैं ? आवेश के प्रकार आवेश दो प्रकार के होते हैं, धनावेश तथा ऋणावेश। धनावेश प्रोटॉन के कारण होता है तथा ऋणावेश इलेक्ट्रॉन के कारण। तीसरे प्रकार का कोई आवेश ब्रहाण्ड में विद्यमान नहीं है। आवेश का क्वांटीकरण आवेश सदैव पैकेट के रूप में होता है, सतत्‌ नहीं। किसी वस्तु को दिया गया आवेश सदैव एक न्यूनतम आवेश का पूर्ण गुणज होता है यह न्यूनतम आवेश इलेक्ट्रॉन के आवेश के बराबर होता है, जिसका मान e = 1.6*10 -19 C होता है। q = ne,        यहां n = 0, 1, 2, ... आवेश संरक्षण का नियम आवेश को न तो उत्पन्न किया जा सकता है तथा न ही नष्ट किया जा सकता है, परन्तु इसे निकाय के एक भाग से दूसरे भाग में स्थानान्तरित किया जा सकता है। किसी विलगित निकाय का आवेश सदैव संरक्षित रहता है। Σq i = नियत,           यहां q i = iवे कण का आवेश आवेश के गुण स्थिर विद्युत आव...