Skip to main content

चार महीने का बच्चा कैसे बना अरब़पति

चार महीने का बच्चा कैसे बना अरब़पति? जन्म के सिर्फ चार माह बाद यदि कोई बच्चा अरबपति बन जाए तो इसे उसकी किस्मत ही कहेंगे। भारत के एकाग्रह रोहन मूर्ति नाम के बच्चे की किस्मत कुछ इसी प्रकार चमकी है। देश की दूसरी सबसे बड़ी आइटी कम्पनी इंफोसिस के फाउंडर नारायण मूर्ति ने सोमवार अपने चार महीने के पोते एकाग्रह मूर्ति को 240 करोड़ रूपए के शेयरों की हिस्सेदारी का तोहफा देकर उसे शायद देश का सबसे कम उम्र का अरबपति बना दिया है। BSE की फाइलिंग के अनुसार इंफोसिस में अब एकाग्रह रोहन की 15 लाख शेयरों की हिस्सेदारी हो गई है। इसका मतलब अब एकाग्रह रोहन इंफोसिस का 0.04% का हिस्सेदार है। शेयरों के स्थानान्तरण के बाद नारायण मूर्ति के पास कम्पनी के कुल शेयरों का 0.36% हिस्सा बचा है। जिस समय नारायण मूर्ति द्वारा अपने पोते को शेयर देने की खबर बाई उस समय इंफोसिस के शेयरों में गिरावट देखने को मिल रही थी। एकाग्रह रोहन, नारायण मूर्ति तथा सुधा मूर्ति के बेट रोहन मूर्ति और उनकी पत्नि अर्पणा कृष्णन का बेटा है। आपको यह पता होगा कि नोरायण मूर्ति ने अपनी पत्नि सुधा मूर्ति से 10 हजार रूपए उधार लेकर 1981 में इंफोसिस क

Liquid helium as a Boson system | Statistical physics

Liquid helium as a Boson system

  • Ordinary helium consists almost entirely of neutral atom of the isotope 2He4.
  • Since the total angular momentum of these atom is zero, so it follow the Bose-Einstein statistics.

Properties of helium at low temperature

  • The helium gas at atmospheric pressure condenses at 4.3K temperature into a liquid helium having critical temperature 5.2K, and the density of this liquid helium is very low (ρ = 0.124 g/cm3).
  • On further cooling the helium to about 0.82K, it does not freeze, and the liquid helium remains into liquid state up to absolute zero temperature i.e., T = 0K.
  • It means the helium does not solidified at atmospheric pressure. To get the solid state of helium, it is subjected to an external pressure of at least 23atm.
Phase transition of liquid He
  • For He4 in liquid phase, there is another phase transition (λ-transition), which divides the liquid state into two phases HeI and HeII.
  • While liquefying He at about 2.2K, density become an abrupt maximum and then decreases slightly.
  • Therefore the critical temperature is at 2.186K and it represents a transition to a new state of matter, known as liquid HeII.
  • In liquid HeII
    • Heat conductivity is very large (order of 3 x 106 times greater).
    • Coefficient of viscosity is gradually decreases with decrease in temperature and approaching to zero at absolute zero temperature.
    • The specific heat curve is discontinuous at 2.186K and the shape of this curve is same as letter λ, and therefore this particular transition is known as λ-transition.
    • The discontinuity temperature 2.186K is called λ-point.

  • Since experimentally at λ-point, liquid HeII state has no latent heat so Keeson concluded that transition HeI → HeII at Tλ is a second order transition and as the pressure increases, the temperature decreases.
  • Below the λ-line, liquid can be described by the two-fluid model.
  • It behaves as if it consists of two components:
  • A normal component, which behaves like a normal fluid.
  • A super-fluid component with zero viscosity and zero entropy.
  • The ratio of the respective densities (ρn / ρ) and (ρs / ρ) depend on the temperatures.
  • Here ρns) is the density of normal (super-fluid) component, and ρ is the total density.
  • By lowering the temperature, the fraction of the super-fluid density increases from 0 at Tλ to 1 at 0K.
  • Below 1K, the He is almost completely super-fluid.
  • Since ρn + ρs is constant, so it is impossible to create density waves of the normal component (and hence of the super-fluid component), which is similar to ordinary sound waves.
  • This effect is known as second sound.

Explanation based on Bose-Einstein condensation model

London’s theory

  • The behaviour of liquid He at low temperature is based on B-E statistics.
  • London suggested that HeII is similar to B.E. gas and its λ-transition is the counter part of Bose-Einstein condensation in the ideal gas.
  • In Bose-Einstein gas, degeneracy 1/D = (n/gsV) (2πmkT/h2)-3/2
  • Since the helium atoms are light enough and the density (n/V) of the liquid is sufficiently high for the R.H.S. to be large and degeneracy to be small, but it is low enough for the liquid to behave as a gas.
  • London concluded this λ-transition as a result of B.E. condensation and gave a similarity between λ-point and B.E. temperature T0.
  • gs = (Zt)T = T0 = n / F3/2(0)
  • Where translational partition function Zt = (2πmkT / h2)3/2 V
  • ∴ gs (2πmkT0 / h2)3/2 V = n / 2.612, where T0 = (h2/2πmk) (n / 2.612Vgs)2/3
  • For a gram molecule of helium in liquid state, V = 27.4 cm3, T0 = 3.12K.
  • It is close to Tλ = 2.186K for the λ-point.
  • This agreement between T0 and Tλ favours the London explanation.
  • The decrease in entropy below Tλ being zero at 0.5K is explained by B.E. condensation because at T = T0 most of the particles rapidly fall into the ground state, which is characterized by zero entropy.

Comments

Popular posts from this blog

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or   https://youtu.be/9bR1LfbVrGw

Constraints | Classification and Properties of constraints | Classical mechanics

Constraints and its classification Constraints force Constraints are restrictions that limit the motion of the particles of a system. Physically constrained motion is realized by the forces which arise when the object in motion is in contact with the constraining surfaces or curves. These forces are called constraint forces. Properties of constraints force They are elastic in nature and appear at the surface of contact. They are so strong that they barely allow the body under consideration to deviate even slightly from a prescribed path or surface. This prescribed path or surface is called a constraint. The effect of constraint force is to keep the constraint relations satisfied. Classification of constraints           Scleronomic and Rheonomic This classification is based on time. The constraints are said to be scleronomic constraints, if the constraint relations do not explicitly depend on time. But if the constraint relations explicitly depend on ti

Advantage and Disadvantage of Power Electronics

Advantage and Disadvantage of Power Electronics Advantage of Power electronics Power electronics is used in space shuttle power supplies Since there is very low loss in power electronic devices so its efficiency is very high. Power electronic converter systems are highly reliable. Since there is no moving parts in power electronic systems so it has long life and also its maintenance cost is very less. The power electronic systems has fast dynamic response in comparison to electromechanical converter systems. Since the power electronic system has small size and also it has less weight so they occupy less floor space and hence their installation cost is also less. Now these days power equipments are being mostly used, so power semiconductor devices are being produced on a large scale, resulting in lower cost of converter equipment. Power electronics are used in computer and office equipments. It is used in uninterruptible power supplies. Power

Adesterra