Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

de Broglie hypothesis | Quantum mechanics | Physical basis of quantum mechanics

de Broglie hypothesis

  • According to de-Broglie, a wave is always associated with every moving particle. This wave is known as de-Broglie wave or matter wave.
  • It means a matter wave have particle nature as well as wave nature i.e., dual nature.
  • From quantum theory of radiation, energy of photon, E = h𝝂,   where 𝝂 = frequency of incident photon .
  • From Einstein’s theory of relativity E = √(m02c4 + p2c2)
  • If m0 = 0, then E = pc,  p = momentum and c = velocity of light
  • Now E = h𝝂 and E = pc
  • ∴     h𝝂 = pc     or     p = h𝝂/c
  • ∵      c = 𝝂λ      or     λ = c/𝝂
  • ∴      p = h/λ     or     λ = h/p     This is known as de-Broglie wavelength
  • This wavelength is always associated with a photon
  • Since momentum is the characteristic of particles, and the wavelength is characteristic of wave.
  • Hence a wave is always associated with a particle.

Conclusion

  • The wavelength of a particle is independent of the charge or the nature of the particle.
  • The E.M. waves are produced only due to the charged particle. Hence the matter waves are not E.M. in nature.
  • ∵     λ = h/p    and   p = mv      ⇒     λ ∝ 1/v    and   λ ∝ 1/m,      v = velocity of particle 
  • Faster is the particle, smaller is its wavelength.
  • Heavier is the particle, smaller is its wavelength.
  • If v is comparable to c, then m = m0/√(1 − v²/c²) 
                

de Broglie wavelength of different particles

  • If an electron is accelerated by applying a potential difference V, then 
  • Energy acquired with it is E = eV
  • If m0 is rest mass of electron, and v is the velocity of electron, then 
  • Kinetic energy of electron, E = ½ m0v²    or   v = √(2E/m0)
  • If relativistic variation of mass with velocity is ignored m ≈ m0 
  • ∴     v = √(2E/m)
  • But  E = eV
  • ∴     v = √(2eV/m)
  • ∵     de-Broglie wavelength λ = h/mv and v = √(2eV/m)
  • ∴     λ = h/√2meV      or      λ = 12.27/√V  Å
  • For any charged particle    λ = h/√2mqV
  • For any massive particle    λ = h/√2mE            where E is kinetic energy
  • If a matter particle at absolute temperature T is in thermal equilibrium, then 
  • E = 3/2 kT      where   k = Boltzmann's constant and T is absolute temperature
  • ∵     λ = h/√2mE     ∴   λ = h/√3mkT

  Bohr’s hypothesis from de Broglie’s hypothesis

  • According to Bohr’s postulate, an electron can revolve around the nucleus only in those orbits whose angular momentum is an integral multiple of h/2π.
  • ∴     mvr = nh/2π
  • Since a wave is associated with a moving particle, so 2πr = nλ
  • Here 2πr is the circumference of the stable orbit
  • From de-Broglie hypothesis,  λ = h/mv
  • Now 2πr = nλ  and  λ = h/mv
  • ∴     2πr = nh/mv ⇒ mvr = nh/2π
  • Which is the Bohr's hypothesis

To know more about this lecture please visit on https://youtu.be/PFcQEKaX1fc

Comments

Popular posts from this blog

Calculus | Mathematics | BSc

Calculus Differential Calculus, Integral Calculus and Differential Equation Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria, Dr. Chandrapal Singh Chouhan ISBN : 978-93-94954-67-0 Price: Rs. 395.00  Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail : info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on Calculus by Saraswat This book includes the following topics  Pedal Equations and Derivative of the Length of an Arc Polar co-ordinates Relation between cartesian and polar co-ordinates Angle between radius vector and tangent Angle of intersection of two polar curves Polar tangent, subtangent, normal, subnormal and their lengths Perpendicular from pole to tangent and its length Pedal equation Differential coefficient of length of the arc When the equation of curve is in cartesian form (x, y); When the equation of curve is in ...

Advanced Calculus | Mathematics | BSc

Advanced Calculus Advanced Differential Calculus, Integral Calculus and Vector Calculus Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria ISBN : 978-81-7906-950-9 Price: Rs. 375.00 Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Advanced Calculus by Saraswat This book includes the following topics  Continuity Introduction Limit Left and right limit To find the R.H.L. and L.H.L. of a function Existence of limit)/li> Distinction between the value and limit of a function Some theorems based on limits Methods of finding the limit of functions Some standard limits Cauchy’s definition of continuity Continuity from left and right Continuity of a function in an interval Continuity in the open interval); Continuity in the closed in...

B.N.U. First Semester Physics Syllabus

B.N. UNIVERSITY, UDAIPUR B.Sc. I Semester Physics PHYS MJ 111T: MECHANICS UNIT-I Laws of motion and Frame of reference: Laws of motion, conservation of momentum and energy, Co-ordinate frames, inertial and non-inertial frame of reference, Galilean transformation and invariance, fictitious force, centrifugal force, transformation of coordinate, velocity, acceleration and displacement in a rotating frame of reference, uniformly rotating frame of reference, Coriolis force, effect of centrifugal and Coriolis force due to earth’s rotation, Foucault’s pendulum. UNIT-II Gravitational Field and Potential: Newton’s universal law of gravitation, gravitational field intensity, gravitational potential due to spherical shell and solid sphere, gravitational potential energy, Laplace and Poisson’s equations, Gauss’s law, gravitational self-energy of a uniform sphere. Dynamics of System of Particles: Centre of mass, calculation of centre of mass of regular rigid bodies ...