Skip to main content

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल 30 नवम्बर को राजस्थान वन विभाग उदयपुर डिविजन तथा WWF-India उदयपुर डिविजन के सानिध्य में महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल की गई, जिसमें WWF-India के स्टेट काॅर्डिनेटर श्रीमान अरूण सोनी तथा वन विभाग कीे ओर से डाॅ. सतीश कुमार शर्मा, सेवानिवृत्त अधिकारी मौजूद थे। मुझे भी इस इको ट्रेल में जाने का सुअवसर प्राप्त हुआ, जो गोरीला व्यू पाॅइंट से बड़ी-लेक व्यू पाॅइंट तक की गई इसमें मुझे विज्ञान की एक नई शाखा के बारे में पता चला, जिसे टट्टी विज्ञान कहा जाता है। सुनने में आपको थोड़ा अजीब लगेगा, मुझे भी सुनकर हैरानी हुई, परन्तु वास्तव में एक ऐसा भी विज्ञान है, जिसके बारे में डाॅ. सतीश शर्मा ने बड़े ही विस्तार पूर्वक बताया कि किस प्रकार वनों में जानवरों की टट्टी देखकर यह पता लगाया जा सकता है कि यहां कौनसा जानवर आया था। जानवरों की टट्टी कितनी पुरानी है, वह गीली है या सूखी है। इसी के आधार पर उस विशेष जंगल में कौन-कौनसे जानवर विचरण करते हैं, उसके बारे में वन विज्ञान के कर्मचारी पता लगा लेते हैं। जानवरों की टट्टी का विश्लेषण करके यह पता लगा...

Dulong and Petit's law

Dulong and Petit's law

  • According to Dulong and Petit's law the product of atomic weight and specific heat for all the elements in its solid state is always constant and its value is approximately 6.4. 
  • This law is used to determine the atomic weight of substance.

    Dulong and Petit’s law from Kinetic theory

  • According to the law of equi-partition of energy, the average kinetic energy of translation associated with each degree of freedom is 1/2kT.
  • If the oscillatory motion of atom is simple harmonic then in each oscillation the average kinetic energy = Average potential energy.
        Total energy associated with each degree of freedom of atom 
                                    = 1/2 kT + 1/2 kT = kT
        Since there are three degrees of freedom for oscillatory motion of each atom
        So the total energy of each atom = 3kT
        If we consider the 1 gm-atom of any solid at absolute temperature T
        So the number of atoms in 1 gm-atom of gas = N, where N is Avogadro number
        Total energy of 1 gm of solid
                  U = N * 3 kT = 3NkT                      [ R = Nk ]
                  U = 3RT
                 dU/dT = 3R
        Since dU/dT is the atomic heat of solid at constant volume i.e., Cv            
        So,    Cv = 3R
        Since R = 1.98 cal/gm-atom/°C
        So,    Cv = 3 * 1.98 = 5.94 cal/gm-atom/°C
        Atomic heat of solid = 6 cal cal/gm-atom/°C  (approximate)
       Thus it agrees with Dulong and Petit's law

Failure of Dulong and Petit's law

  • C, B, Si like non-metallic elements have value of atomic heat different from 6.4 at normal temperature (about 6.0).
  • But above 500°C their value tends to about 6.4.
  • At absolute zero temperature the value of atomic heat of all the elements tends to zero.
It is clear from the following figure


        Explanation of Failure of Dulong and Petit's law




To know about this lecture in more detail please visit on https://youtu.be/R_xEBgzUmkQ


Comments

Popular posts from this blog

Calculus in Hindi | कलन | Mathematics | BSc

कलन (Calculus) अवकलन, समाकलन तथा अवकल समीकरण (Differential Calculus, Integral Calculus and Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. चन्द्रपाल सिंह चौहान  ISBN : 978-81-7906-933-2  Price: Rs. 295.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone: +91 9664392614 To buy this book click on Calculus in Hindi by Saraswat This book includes the following topics  पदिक समीकरण एवं चाप की लम्बाई के अवकलज (Pedal Equations and Derivative of the Length of an Arc) ध्रुवीय निर्देशांक (Polar co-ordinates) कार्तीय एवं ध्रुवीय निर्देशांकों में सम्बन्ध (Relation between cartesian and polar co-ordinates) त्रिज्य सदिश एवं स्पर्श रेखा के मध्य कोण (Angle between radius vector and tangent) दो ध्रुवीय वक्रों का प्रतिच्छेन कोण (Angle of intersection of two polar curves) ध्रुवीय स्पर्शी, अधःस्पर्शी, लम्ब एवं अधोलम्ब तथा उनकी लम्बाई...

Differential equations in Hindi | अवकल समीकरण | Mathematics | BSc

अवकल समीकरण (Differential equations) साधारण अवकल समीकरण तथा आंशिक अवकल समीकरण (Ordinary Differential Equation and Partial Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. गजेन्द्रपाल सिंह राठौड़ ISBN : 978-81-7906-969-1 Price: Rs. 385.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Differential Equations by Saraswat This book includes the following topics  यथार्थ एवं विशिष्ट रूप वाली अवकल समीकरण (Exact Differential Equations and Equations of Special Forms) परिचय (Introduction) nवीं कोटि के यथार्थ रैखिक अवकल समीकरण (Exact linear differential equation of nth order) nवीं कोटि के रैखिक अवकल समीकरण की यथार्थता का प्रतिबन्ध (Condition of exactness of a linear differential equation of order n) समाकलन गुणांक अरैखिक अवकल समीकरण की यथार्थता (Exactness of ...

Gamma ray microscope method | Quantum mechanics | Physical basis of quantum mechanics

Proof of uncertainty principle Gamma ray microscope method (Thought experiment) Let electron whose position (x) and momentum (p) is to be determined is initially at P From diffraction theory, the limit of resolution of microscope               Δx = λ / 2 sin θ Δx = Distance between two points upto which they can be seen separately. Δx = Maximum uncertainty in position of electron Since the wavelength of 𝛾-ray is small, so we choose it because it decreases Δx Let at least one 𝛾-ray photon be scattered by the electron into the microscope so that the electron is visible. In this process the frequency and wavelength of the scattered photon is changed and the electron suffers a Compton recoil by gaining the momentum. If λ = wavelength of the scattered photon, then the momentum of the scattered photon, p = h / λ Since the scattered photon can be scattered in any direction from PA to PB, so the x-compone...