Skip to main content

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल 30 नवम्बर को राजस्थान वन विभाग उदयपुर डिविजन तथा WWF-India उदयपुर डिविजन के सानिध्य में महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल की गई, जिसमें WWF-India के स्टेट काॅर्डिनेटर श्रीमान अरूण सोनी तथा वन विभाग कीे ओर से डाॅ. सतीश कुमार शर्मा, सेवानिवृत्त अधिकारी मौजूद थे। मुझे भी इस इको ट्रेल में जाने का सुअवसर प्राप्त हुआ, जो गोरीला व्यू पाॅइंट से बड़ी-लेक व्यू पाॅइंट तक की गई इसमें मुझे विज्ञान की एक नई शाखा के बारे में पता चला, जिसे टट्टी विज्ञान कहा जाता है। सुनने में आपको थोड़ा अजीब लगेगा, मुझे भी सुनकर हैरानी हुई, परन्तु वास्तव में एक ऐसा भी विज्ञान है, जिसके बारे में डाॅ. सतीश शर्मा ने बड़े ही विस्तार पूर्वक बताया कि किस प्रकार वनों में जानवरों की टट्टी देखकर यह पता लगाया जा सकता है कि यहां कौनसा जानवर आया था। जानवरों की टट्टी कितनी पुरानी है, वह गीली है या सूखी है। इसी के आधार पर उस विशेष जंगल में कौन-कौनसे जानवर विचरण करते हैं, उसके बारे में वन विज्ञान के कर्मचारी पता लगा लेते हैं। जानवरों की टट्टी का विश्लेषण करके यह पता लगा...

Dulong and Petit's law

Dulong and Petit's law

  • According to Dulong and Petit's law the product of atomic weight and specific heat for all the elements in its solid state is always constant and its value is approximately 6.4. 
  • This law is used to determine the atomic weight of substance.

    Dulong and Petit’s law from Kinetic theory

  • According to the law of equi-partition of energy, the average kinetic energy of translation associated with each degree of freedom is 1/2kT.
  • If the oscillatory motion of atom is simple harmonic then in each oscillation the average kinetic energy = Average potential energy.
        Total energy associated with each degree of freedom of atom 
                                    = 1/2 kT + 1/2 kT = kT
        Since there are three degrees of freedom for oscillatory motion of each atom
        So the total energy of each atom = 3kT
        If we consider the 1 gm-atom of any solid at absolute temperature T
        So the number of atoms in 1 gm-atom of gas = N, where N is Avogadro number
        Total energy of 1 gm of solid
                  U = N * 3 kT = 3NkT                      [ R = Nk ]
                  U = 3RT
                 dU/dT = 3R
        Since dU/dT is the atomic heat of solid at constant volume i.e., Cv            
        So,    Cv = 3R
        Since R = 1.98 cal/gm-atom/°C
        So,    Cv = 3 * 1.98 = 5.94 cal/gm-atom/°C
        Atomic heat of solid = 6 cal cal/gm-atom/°C  (approximate)
       Thus it agrees with Dulong and Petit's law

Failure of Dulong and Petit's law

  • C, B, Si like non-metallic elements have value of atomic heat different from 6.4 at normal temperature (about 6.0).
  • But above 500°C their value tends to about 6.4.
  • At absolute zero temperature the value of atomic heat of all the elements tends to zero.
It is clear from the following figure


        Explanation of Failure of Dulong and Petit's law




To know about this lecture in more detail please visit on https://youtu.be/R_xEBgzUmkQ


Comments

Popular posts from this blog

Gamma ray microscope method | Quantum mechanics | Physical basis of quantum mechanics

Proof of uncertainty principle Gamma ray microscope method (Thought experiment) Let electron whose position (x) and momentum (p) is to be determined is initially at P From diffraction theory, the limit of resolution of microscope               Δx = λ / 2 sin θ Δx = Distance between two points upto which they can be seen separately. Δx = Maximum uncertainty in position of electron Since the wavelength of 𝛾-ray is small, so we choose it because it decreases Δx Let at least one 𝛾-ray photon be scattered by the electron into the microscope so that the electron is visible. In this process the frequency and wavelength of the scattered photon is changed and the electron suffers a Compton recoil by gaining the momentum. If λ = wavelength of the scattered photon, then the momentum of the scattered photon, p = h / λ Since the scattered photon can be scattered in any direction from PA to PB, so the x-compone...

Cardinal points of a lens system | Optics | General theory of image formation

Cardinal points of a lens system There are total six cardinal points of a lens system, which are first and second focal points, first and second principal points, and first and second nodal points. First and second focal points (First and second focal planes) A pair of points lying on the principal axis and conjugate to points at infinity are known as focal points. First and Second focal points A point on the principal axis in the object space so that the rays starting (or appear to start) from it become parallel to the principal axis after refraction from the lens system is known as first focal point (F 1 ). A point on the principal axis in the image space so that the rays parallel to the principal axis in the image space focus (or appear to focus) at this point after refraction from the lens system is known as second focal point (F 2 ). First and Second focal planes The plane passing through the first focal point, and perpendicular to the optic axis is first f...

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...