Skip to main content

हार्मोनल परिवर्तन के कारण कम उम्र में लड़कियों में हो रहा शारीरिक परिवर्तन

हार्मोनल परिवर्तन के कारण कम उम्र में लड़कियों में हो रहा शारीरिक परिवर्तन प्रदुषण और जंक फूड घटा रहा मुश्किल भरे दिन की उम्र लड़कियों में समय से पहले हार्मोनल चेंज के मामले बढ़ रहे हैं। शारीरिक बदलाव के लिए औसत उम्र 13 से 14 साल मानी जाती है, अब 8 से 11-12 साल में वजन बढ़ने जैसी समस्या आ रही है। कम उम्र में मुश्किल भरे दिनों का सामना करना पड़ रहा है। विशेषज्ञों की मानें तो समस्या प्रदुषण और जंक फूड के अत्यधिक सेवन से बढ़ रही है। शरीर में हार्मोनल परिवर्तन, किसी प्रकार की सिस्ट और ट्यूमर जैसे कारण सामने आ रहे हैं। इनके लिए मुख्य कारण निम्न हैं- लड़कियों में हार्मोनल परिवर्तन से पीरियड जल्दी आते हैं। आनुवंशिक समस्या इसके लिए जिम्मेदार हो सकती है। तनाव से भी हार्मोनल परिवर्तन होते हैं। आयरन तथा विटामिन-डी जैसे पोषण तत्वों की कमी भी हार्मोनल परिवर्तन के लिए जिम्मेदार हैं। प्रदुषण के सम्पर्क में रहने पर भी ये समस्या होती है। शरीर में कही भी सिस्ट या ट्यूमर होने पर भी ये सम्भव है। अगर 8 साल से 12 साल की उम्र के बीच किसी बालिका के शरीर में तेजी से परिवर्तन हो तो मुश्...

Phase velocity and Group velocity | Quantum mechanics

Phase velocity and Group velocity

Phase velocity (Wave velocity)

  • If a single monochromatic wave (wave of single frequency or wavelength) travels through a medium, then the velocity through which it propagate is wave velocity.
  • Equation of plane progressive wave propagating in x-direction
            y = a sin (ωt - kx)
  • Here a = amplitude, ω = angular frequency, and k = 2π / λ = wave vector or propagation constant
  • Since in wave motion, the particles of the medium vibrates about their mean position continuously, the velocity acquired by particle during this motion is particle velocity.
  • During this motion, the disturbance (crest or trough) also produced and they also move in the direction in which the wave propagate and also with the same velocity.
  • The velocity of the disturbance through which it advances through the medium is phase velocity (wave velocity).

  • Above equation gives the wave velocity
  • Thus the ratio of angular frequency to the propagation constant (wave vector) is known as wave velocity.
  • In equation  y = a sin (ωt - kx), (ωt - kx) is phase of wave motion
  • For the planes of constant phase or wavefronts
            (ωt - kx) = constant
  • Above expression represents the wave velocity.
  • Since the wave velocity is the velocity with which planes of constant phase advance through the medium, and above expression is obtained for such type of wave, so it is also known as phase velocity.
                

Group velocity 

  • In practical life we come across pulse or group of wave of slightly different frequencies. This group of waves are wave packets.
  • A wave packet refers to the case where two or more waves exist simultaneously.
  • The group velocity of a wave packet is the velocity with which the maximum amplitudes of the group advances in the medium.
  • This is the velocity with which the energy in the group is transmitted.
  • The group velocity is defined as the rate of change of angular velocity with respect to wave vector.
            
  • Let a wave packet is made up of two harmonic waves

  • Let on superposition, these waves form a wave packet, then resultant displacement of wave packet
                y = y1 + y2

  • The amplitude of this equation is modulated by

  • Here figure (a) and (b) shows the two waves of slightly different frequencies, and figure (c) shows the resultant wave of these two waves.

  • If △ω and △k are very small. 

Comments

Popular posts from this blog

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब | Kinetic theory of gases and Pressure of an ideal gas in Hindi | Thermodynamics

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब गैसों के गतिज सिद्धान्त की अभिधारणाएं एक गैस अत्यन्त छोटे, अदृश्य एवं पूर्णतः प्रत्यास्थ कणों से मिलकर बनी होती है, जो अणु   कहलाते हैं। एक शुद्ध गैस के सभी अणु समदृश होते हैं तथा ये सभी सम्भव दिशाओं में सभी सम्भव वेग से सतत्‌ रूप से गति करते रहते हैं। गैस जिस पात्र में भरी जाती है, वह उस पात्र की दीवारों पर दाब लगाती है। गैस के अणु किन्हीं दो क्रमागत टक्करों के मध्य सीधी रेखा में गति करते हैं। गैस के अणुओं का आकार किन्हीं दो क्रमागत टक्करों के मध्य तय की गई दूरी की तुलना में अनन्त सूक्ष्म होता है। ये टक्करें तात्क्षणिक होती हैं तथा टक्करों में गतिज ऊर्जा की कोई हानि नहीं होती है। अणु एक दूसरे पर कोई बल नहीं लगाते हैं। वे एक दूसरे पर बल केवल टकराने के दौरान लगाते हैं। इनकी सम्पूर्ण आणविक ऊर्जा, गतिज ऊर्जा होती है। गैस के अणुओं का कुल आयतन, उस पात्र के आयतन, जिसमें यह भरी है कि तुलना में नगण्य होता है। गैस में अन्तर-आणविक दूरी बहुत अधिक होती है, जिससे कि गैस के अणु उसके लिए उपलब्ध सम्पूर्ण स्थान में मुक...

Jacobi-Poisson theorem | Poisson’s second theorem | Classical mechanics

Jacobi-Poisson theorem Poisson’s second theorem If u and v are any two constants of motion of any given system, then their Poisson bracket [ u , v ] are also a constant of motion. If u is a constants of motion, then [ u , H ] + ∂ u /∂t = 0 ⇒ [ u ,  H ] = - ∂ u /∂t. Given u and v are constant of motion               We have to prove [u, v] is also a constant of motion                     Proof By Jacobi identity This is mathematical form of  Jacobi-Poisson’s theorem or Poisson's second theorem . According to statement of Jacobi-Poisson theorem if  u and v are any two constants of motion of any given system, then their Poisson bracket [ u , v ] are also a constant of motion. To know about Jacobi-Poisson theorem of Poisson second theorem  click on the link for English  and  click on the link for Hindi...

Adesterra