Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Coaxial lens system and its cardinal points | Optics | General theory of image formation

Coaxial lens system and its cardinal points

  • Let two lenses of focal lengths f1 and f2 are placed at a distance d from each other as shown in figure.

Coaxial lens system
  • If δ1 and δ2 are the deviations produced by lens L1 and L2, then
  • Total deviation produced by lens system
                    δ = δ1 + δ2                                                                            ...(1)

Equivalent focal length 

  • The deviation produced by a thin lens, δ = h / f
                δ1 = h1 / f1,    δ2 = h2 / f2    and    δ = h1 / F    ...(2)
  • Here F is the equivalent focal length of the lens system.
  • From equations (1) and (2), we get
                     
  • From figure
            O2C = O2P - CP                (∵  δ= CP / BP)
            
            h2 = h1 - (BP) δ1

            h2 = h1 - d (h/ f1) = h1 (1 - d / f1

            

  • Here Δ is known as optical separation.
  • If P1 and P2 are the power of L1 and L2, and P is the power of lens system
            P = P1 + P2 - d P1P2

Position of second focal point (O2F2 = β2)

  • The real points from where the distances can be measured are O1 and O2
  • The distance of F2 will be measured from O2,
            O2F2 = β2
  • From ΔM2H2F2 and ΔCO2F2

Position of second principal point (O2H2 = α2)

  • The distance of second principal point is measured from the second optical centre O2
  • From figure, 
            H2O2 = H2F2 - O2F2
            α= F - β2             (∵  H2F2 = F and O2F2 = β2)

  • Since H2 lies to the left of L2
            

Position of first principal point (O1H1 = α1)

  • The distance of first principal point is measured from the first optical centre O1
                

Position of first focal point (O1F1 = β1)

  • The distance of first focal point can be measured from the first optical centre O1
  • From figure
                O1F1 = H1F1 - O1H            (∵    H1F1 = F and O1H1 = α1)

                β1 = F - α1 

                
  • Since F1 lies to the left of L1
             
To know more about cardinal points of a lens system please click on the link https://youtu.be/_15xR0-N7ho or https://youtu.be/rq4Yoq9JiQc

Comments

Popular posts from this blog

Advanced Calculus | Mathematics | BSc

Advanced Calculus Advanced Differential Calculus, Integral Calculus and Vector Calculus Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria ISBN : 978-81-7906-950-9 Price: Rs. 375.00 Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Advanced Calculus by Saraswat This book includes the following topics  Continuity Introduction Limit Left and right limit To find the R.H.L. and L.H.L. of a function Existence of limit)/li> Distinction between the value and limit of a function Some theorems based on limits Methods of finding the limit of functions Some standard limits Cauchy’s definition of continuity Continuity from left and right Continuity of a function in an interval Continuity in the open interval); Continuity in the closed in...

B.N.U. First Semester Physics Syllabus

B.N. UNIVERSITY, UDAIPUR B.Sc. I Semester Physics PHYS MJ 111T: MECHANICS UNIT-I Laws of motion and Frame of reference: Laws of motion, conservation of momentum and energy, Co-ordinate frames, inertial and non-inertial frame of reference, Galilean transformation and invariance, fictitious force, centrifugal force, transformation of coordinate, velocity, acceleration and displacement in a rotating frame of reference, uniformly rotating frame of reference, Coriolis force, effect of centrifugal and Coriolis force due to earth’s rotation, Foucault’s pendulum. UNIT-II Gravitational Field and Potential: Newton’s universal law of gravitation, gravitational field intensity, gravitational potential due to spherical shell and solid sphere, gravitational potential energy, Laplace and Poisson’s equations, Gauss’s law, gravitational self-energy of a uniform sphere. Dynamics of System of Particles: Centre of mass, calculation of centre of mass of regular rigid bodies ...

Constraints | Classification and Properties of constraints | Classical mechanics

Constraints and its classification Constraints force Constraints are restrictions that limit the motion of the particles of a system. Physically constrained motion is realized by the forces which arise when the object in motion is in contact with the constraining surfaces or curves. These forces are called constraint forces. Properties of constraints force They are elastic in nature and appear at the surface of contact. They are so strong that they barely allow the body under consideration to deviate even slightly from a prescribed path or surface. This prescribed path or surface is called a constraint. The effect of constraint force is to keep the constraint relations satisfied. Classification of constraints           Scleronomic and Rheonomic This classification is based on time. The constraints are said to be scleronomic constraints, if the constraint relations do not explicitly depend on time. But if the constraint rela...