Skip to main content

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल 30 नवम्बर को राजस्थान वन विभाग उदयपुर डिविजन तथा WWF-India उदयपुर डिविजन के सानिध्य में महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल की गई, जिसमें WWF-India के स्टेट काॅर्डिनेटर श्रीमान अरूण सोनी तथा वन विभाग कीे ओर से डाॅ. सतीश कुमार शर्मा, सेवानिवृत्त अधिकारी मौजूद थे। मुझे भी इस इको ट्रेल में जाने का सुअवसर प्राप्त हुआ, जो गोरीला व्यू पाॅइंट से बड़ी-लेक व्यू पाॅइंट तक की गई इसमें मुझे विज्ञान की एक नई शाखा के बारे में पता चला, जिसे टट्टी विज्ञान कहा जाता है। सुनने में आपको थोड़ा अजीब लगेगा, मुझे भी सुनकर हैरानी हुई, परन्तु वास्तव में एक ऐसा भी विज्ञान है, जिसके बारे में डाॅ. सतीश शर्मा ने बड़े ही विस्तार पूर्वक बताया कि किस प्रकार वनों में जानवरों की टट्टी देखकर यह पता लगाया जा सकता है कि यहां कौनसा जानवर आया था। जानवरों की टट्टी कितनी पुरानी है, वह गीली है या सूखी है। इसी के आधार पर उस विशेष जंगल में कौन-कौनसे जानवर विचरण करते हैं, उसके बारे में वन विज्ञान के कर्मचारी पता लगा लेते हैं। जानवरों की टट्टी का विश्लेषण करके यह पता लगा...

Coaxial lens system and its cardinal points | Optics | General theory of image formation

Coaxial lens system and its cardinal points

  • Let two lenses of focal lengths f1 and f2 are placed at a distance d from each other as shown in figure.

Coaxial lens system
  • If δ1 and δ2 are the deviations produced by lens L1 and L2, then
  • Total deviation produced by lens system
                    δ = δ1 + δ2                                                                            ...(1)

Equivalent focal length 

  • The deviation produced by a thin lens, δ = h / f
                δ1 = h1 / f1,    δ2 = h2 / f2    and    δ = h1 / F    ...(2)
  • Here F is the equivalent focal length of the lens system.
  • From equations (1) and (2), we get
                     
  • From figure
            O2C = O2P - CP                (∵  δ= CP / BP)
            
            h2 = h1 - (BP) δ1

            h2 = h1 - d (h/ f1) = h1 (1 - d / f1

            

  • Here Δ is known as optical separation.
  • If P1 and P2 are the power of L1 and L2, and P is the power of lens system
            P = P1 + P2 - d P1P2

Position of second focal point (O2F2 = β2)

  • The real points from where the distances can be measured are O1 and O2
  • The distance of F2 will be measured from O2,
            O2F2 = β2
  • From ΔM2H2F2 and ΔCO2F2

Position of second principal point (O2H2 = α2)

  • The distance of second principal point is measured from the second optical centre O2
  • From figure, 
            H2O2 = H2F2 - O2F2
            α= F - β2             (∵  H2F2 = F and O2F2 = β2)

  • Since H2 lies to the left of L2
            

Position of first principal point (O1H1 = α1)

  • The distance of first principal point is measured from the first optical centre O1
                

Position of first focal point (O1F1 = β1)

  • The distance of first focal point can be measured from the first optical centre O1
  • From figure
                O1F1 = H1F1 - O1H            (∵    H1F1 = F and O1H1 = α1)

                β1 = F - α1 

                
  • Since F1 lies to the left of L1
             
To know more about cardinal points of a lens system please click on the link https://youtu.be/_15xR0-N7ho or https://youtu.be/rq4Yoq9JiQc

Comments

Popular posts from this blog

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब | Kinetic theory of gases and Pressure of an ideal gas in Hindi | Thermodynamics

गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब गैसों के गतिज सिद्धान्त की अभिधारणाएं एक गैस अत्यन्त छोटे, अदृश्य एवं पूर्णतः प्रत्यास्थ कणों से मिलकर बनी होती है, जो अणु   कहलाते हैं। एक शुद्ध गैस के सभी अणु समदृश होते हैं तथा ये सभी सम्भव दिशाओं में सभी सम्भव वेग से सतत्‌ रूप से गति करते रहते हैं। गैस जिस पात्र में भरी जाती है, वह उस पात्र की दीवारों पर दाब लगाती है। गैस के अणु किन्हीं दो क्रमागत टक्करों के मध्य सीधी रेखा में गति करते हैं। गैस के अणुओं का आकार किन्हीं दो क्रमागत टक्करों के मध्य तय की गई दूरी की तुलना में अनन्त सूक्ष्म होता है। ये टक्करें तात्क्षणिक होती हैं तथा टक्करों में गतिज ऊर्जा की कोई हानि नहीं होती है। अणु एक दूसरे पर कोई बल नहीं लगाते हैं। वे एक दूसरे पर बल केवल टकराने के दौरान लगाते हैं। इनकी सम्पूर्ण आणविक ऊर्जा, गतिज ऊर्जा होती है। गैस के अणुओं का कुल आयतन, उस पात्र के आयतन, जिसमें यह भरी है कि तुलना में नगण्य होता है। गैस में अन्तर-आणविक दूरी बहुत अधिक होती है, जिससे कि गैस के अणु उसके लिए उपलब्ध सम्पूर्ण स्थान में मुक...

MLSU Third year Physics Syllabus

M.L. SUKHADIA UNIVERSITY, UDAIPUR B.Sc. III Year Physics PAPER-I Quantum mechanics, and Atomic and Molecular Physics UNIT-I Introductory Schrodinger theory: Rise and fall of Plank-Bohr quantum theory, Duality of radiation and matter, de Broglie’s hypothesis, justification for the relation , experimental confirmation. Phase and group velocities of a wave: Formation of a wave packet, illustrations. Uncertainty principle relating to position and momentum, relating to energy and time, application of complementarity principle, photon interpretation of two slit interference, Einstein-de-Broglie relations as a link between particle and wave properties, general equation of wave propagation, propagation of matter waves, time dependent and time independent Schrodinger equations, physical meaning of ψ, conditions to be satisfied by Schrodinger equation as an operator equation. Postulatery approach to wave mechanics, operators, observable and measurements. Operators: Eig...