Skip to main content

National Bird Day: Why Birds Matter to Us

National Bird Day is celebrated every year on 5 January . This day is observed to spread awareness about birds, their importance in nature, and the need to protect them. Birds are beautiful living beings and play a very important role in keeping our environment healthy. Origin of National Bird Day National Bird Day was first celebrated in the year 2002 . It was started by bird lovers and environmental groups to protect birds from dangers like deforestation, pollution, and illegal hunting. The main aim of this day is to teach people, especially students, why birds are important and how we can help save them. Why Is National Bird Day Celebrated Every Year? National Bird Day is celebrated every year because many bird species are disappearing due to human activities. Cutting trees, using plastic, pollution, and climate change are harming birds and their homes. This day reminds us that: Birds need protection Nature should be respected Everyone has a responsibil...

Maxwell Boltzmann Statistics

Maxwell Boltzmann Statistics

  • It is applied to distinguishable particles.
  • Particles are distinguishable from each other.
  • Each cell may contain 0, 1, 2, … ni particles.
  • Total number of particles of system remain constant, n = Σn = constant
  • Sum of energies of all the particles in the different groups taken together i.e., total energy of the system remain constant E = Σniεi = constant

  • Consider a system of n distinguishable particles.
  • These particles be divided into groups or levels such that
  • Energy levels    ε1, ε2, ε3, ...ε
  • Degeneracies    g1, g2, g3, ...g
  • Occupation number    n1, n2, n3, ...n

  • Consider a box, divide it into g sections, distribute nparticles among them.
  • Number of ways to distribute n1 particles in first state are
                  
  • Number of ways to put n2 particles in the second state are
                  
                                … 
  • Total ways to distributions
  • First particle can be accommodated in any of the gi group by gi ways.
  • Since there is no restriction, so second particle can be accommodated in gi group by gi ways.
  •              ….          ….          ….          ….
  • Thus ni particle can be accommodated in gi group by gini
  • Total number of eigen state for the whole system

  • According to the postulates of a priori probability of eigen state
  • Sterling approximation log x! = x log x – x
  • But δni is arbitrary

Comments

Popular posts from this blog

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

आवेश तथा उसके गुण | Charge and its properties in Hindi

आवेश तथा उसके गुण आवेश क्या है कोई नहीं जानता कि आवेश क्या है, केवल हम यह जानते हैं कि आवेश क्या कर सकता है तथा इसके गुण क्या हैं ? आवेश के प्रकार आवेश दो प्रकार के होते हैं, धनावेश तथा ऋणावेश। धनावेश प्रोटॉन के कारण होता है तथा ऋणावेश इलेक्ट्रॉन के कारण। तीसरे प्रकार का कोई आवेश ब्रहाण्ड में विद्यमान नहीं है। आवेश का क्वांटीकरण आवेश सदैव पैकेट के रूप में होता है, सतत्‌ नहीं। किसी वस्तु को दिया गया आवेश सदैव एक न्यूनतम आवेश का पूर्ण गुणज होता है यह न्यूनतम आवेश इलेक्ट्रॉन के आवेश के बराबर होता है, जिसका मान e = 1.6*10 -19 C होता है। q = ne,        यहां n = 0, 1, 2, ... आवेश संरक्षण का नियम आवेश को न तो उत्पन्न किया जा सकता है तथा न ही नष्ट किया जा सकता है, परन्तु इसे निकाय के एक भाग से दूसरे भाग में स्थानान्तरित किया जा सकता है। किसी विलगित निकाय का आवेश सदैव संरक्षित रहता है। Σq i = नियत,           यहां q i = iवे कण का आवेश आवेश के गुण स्थिर विद्युत आव...

Advanced Calculus | Mathematics | BSc

Advanced Calculus Advanced Differential Calculus, Integral Calculus and Vector Calculus Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria ISBN : 978-81-7906-950-9 Price: Rs. 375.00 Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Advanced Calculus by Saraswat This book includes the following topics  Continuity Introduction Limit Left and right limit To find the R.H.L. and L.H.L. of a function Existence of limit)/li> Distinction between the value and limit of a function Some theorems based on limits Methods of finding the limit of functions Some standard limits Cauchy’s definition of continuity Continuity from left and right Continuity of a function in an interval Continuity in the open interval); Continuity in the closed in...