Skip to main content

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल 30 नवम्बर को राजस्थान वन विभाग उदयपुर डिविजन तथा WWF-India उदयपुर डिविजन के सानिध्य में महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल की गई, जिसमें WWF-India के स्टेट काॅर्डिनेटर श्रीमान अरूण सोनी तथा वन विभाग कीे ओर से डाॅ. सतीश कुमार शर्मा, सेवानिवृत्त अधिकारी मौजूद थे। मुझे भी इस इको ट्रेल में जाने का सुअवसर प्राप्त हुआ, जो गोरीला व्यू पाॅइंट से बड़ी-लेक व्यू पाॅइंट तक की गई इसमें मुझे विज्ञान की एक नई शाखा के बारे में पता चला, जिसे टट्टी विज्ञान कहा जाता है। सुनने में आपको थोड़ा अजीब लगेगा, मुझे भी सुनकर हैरानी हुई, परन्तु वास्तव में एक ऐसा भी विज्ञान है, जिसके बारे में डाॅ. सतीश शर्मा ने बड़े ही विस्तार पूर्वक बताया कि किस प्रकार वनों में जानवरों की टट्टी देखकर यह पता लगाया जा सकता है कि यहां कौनसा जानवर आया था। जानवरों की टट्टी कितनी पुरानी है, वह गीली है या सूखी है। इसी के आधार पर उस विशेष जंगल में कौन-कौनसे जानवर विचरण करते हैं, उसके बारे में वन विज्ञान के कर्मचारी पता लगा लेते हैं। जानवरों की टट्टी का विश्लेषण करके यह पता लगा...

डी-ब्रोगली परिकल्पना | H-4 | de Broglie hypothesis in Hindi

डी-ब्रोगली परिकल्पना

  • डी-ब्रोगली के अनुसार एक गतिमान कण से सदैव एक तरंग सम्बद्ध होती है। यह तरंग डी-ब्रोगली तरंग या पदार्थ तरंग कहलाती है।
  • अतः एक पदार्थ तरंग की प्रकृति कण प्रकृति के साथ-साथ तरंग प्रकृति भी होती है, अर्थात द्वैत प्रकृति होती है।
  • विकिरण के क्वांटम सिद्धान्त से, फोटॉन की ऊर्जा, E = h𝝂,   जहां 𝝂 = आपतित फोटॉन की आवृति
  • आइन्सटीन के आपेक्षिकता के सिद्धान्त से E = √(m02c4 + p2c2)
  • यदि  m0 = 0  हो,  तो  E = pc,  p = संवेग तथा c = प्रकाश का वेग
  • अब  E = h𝝂  तथा  E = pc
  • ∴     h𝝂 = pc     ⇒    p = h𝝂/c
  • ∵      c = 𝝂λ      ⇒     λ = c/𝝂
  • ∴      p = h/λ     ⇒     λ = h/p     यह डी-ब्रोगली तरंग दैर्ध्य कहलाती है।
  • यह तरंगदैर्ध्य सदैव एक फोटॉन से सम्बद्ध होती है।
  • चूंकि संवेग कण प्रकृति का अभिलाक्षणिक है तथा तरंग-दैर्ध्य तरंग प्रकृति का अभिलाक्षणिक है।
  • अतः एक गतिमान कण से सदैव एक तरंग सम्बद्ध होती है।

निष्कर्ष

  • कण की तरंगदैर्ध्य, कण के आवेश या प्रकृति पर निर्भर नहीं करती है।
  • विद्युत-चुम्बकीय तरंगें केवल आवेशित कण द्वारा उत्पन्न होती हैं। अतः पदार्थ तरंग की प्रकृति विद्युत-चुम्बकीय नहीं है।
  • ∵     λ = h/p    तथा   p = mv      ⇒     λ ∝ 1/v    तथा   λ ∝ 1/m,     v = कण का वेग 
  • कण का वेग जितना अधिक होगा, उसकी तरंगदैर्ध्य उतनी कम होगी।
  • कण जितना भारी होगा, उसकी तरंगदैर्ध्य उतनी ही कम होगी।
  • यदि  v  का मान  c  के तुलनीय हो, तो  m = m0/√(1 − v²/c²) 
                

विभिन्न कणों के लिए डी-ब्रोगली तरंग दैर्ध्य

  • यदि एक इलेक्ट्रॉन  V  विभवान्तर से त्वरित होता है, तो  
  • इसके द्वारा ग्रहण की गई ऊर्जा  E = eV
  • यदि  m0  इलेक्ट्रॉन का विराम द्रव्यमान, तथा  v  इलेक्ट्रॉन का वेग हो, तो 
  • इलेक्ट्रॉन की गतिज ऊर्जा,  E = ½ m0v²    ⇒   v = √(2E/m0)
  • यदि वेग के साथ द्रव्यमान में आपेक्षकीय परिवर्तन नगण्य हो, तो  m ≈ m0 
  • ∴     v = √(2E/m)
  • परन्तु  E = eV
  • ∴     v = √(2eV/m)
  • ∵     डी-ब्रोगली तरंग दैर्ध्य  λ = h/mv  तथा  v = √(2eV/m)
  • ∴     λ = h/√2meV      ⇒      λ = 12.27/√V  Å
  • किसी भी आवेशित कण के लिए    λ = h/√2mqV
  • किसी भी द्रव्यमान वाले कण के लिए    λ = h/√2mE            जहां  E  गतिज ऊर्जा है।
  • यदि कोई पदार्थ कण  T  परम् ताप पर ऊष्मीय साम्यावस्था में हो, तो 
  • E = 3/2 kT      जहां  k  बोल्ट्जमान नियतांक तथा  T  परम् ताप है।
  • ∵     λ = h/√2mE     ∴   λ = h/√3mkT

  डी-ब्रोगली परिकल्पना से बोहर परिकल्पना

  • बोहर अभिधारणा के अनुसार एक इलेक्ट्रॉन नाभिक के चारों ओर केवल उन्हीं कक्षाओं में चक्कर लगा सकता है, जिसमें कोणीय संवेग का मान  h/2π  का पूर्ण गुणज होता है।
  • ∴     mvr = nh/2π
  • चूंकि प्रत्येक गतिमान कण से सदैव एक तरंग सम्बद्ध होती है, इसलिए  2πr = nλ
  • यहां  2πr  स्थाई कक्षा की परिधि है।
  • डी-ब्रोगली परिकल्पना से,   λ = h/mv
  • अब 2πr = nλ  तथा  λ = h/mv
  • ∴     2πr = nh/mv ⇒ mvr = nh/2π
  • जो बोहर परिकल्पना है।

To know more about this lecture please visit on https://youtu.be/epAlDO7-O3M

Comments

Popular posts from this blog

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

Advanced Calculus | Mathematics | BSc

Advanced Calculus Advanced Differential Calculus, Integral Calculus and Vector Calculus Authors: Dr. Vimal Saraswat, Dr. Anil Kumar Menaria ISBN : 978-81-7906-950-9 Price: Rs. 375.00 Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Advanced Calculus by Saraswat This book includes the following topics  Continuity Introduction Limit Left and right limit To find the R.H.L. and L.H.L. of a function Existence of limit)/li> Distinction between the value and limit of a function Some theorems based on limits Methods of finding the limit of functions Some standard limits Cauchy’s definition of continuity Continuity from left and right Continuity of a function in an interval Continuity in the open interval); Continuity in the closed in...

Calculus in Hindi | कलन | Mathematics | BSc

कलन (Calculus) अवकलन, समाकलन तथा अवकल समीकरण (Differential Calculus, Integral Calculus and Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. चन्द्रपाल सिंह चौहान  ISBN : 978-81-7906-933-2  Price: Rs. 295.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone: +91 9664392614 To buy this book click on Calculus in Hindi by Saraswat This book includes the following topics  पदिक समीकरण एवं चाप की लम्बाई के अवकलज (Pedal Equations and Derivative of the Length of an Arc) ध्रुवीय निर्देशांक (Polar co-ordinates) कार्तीय एवं ध्रुवीय निर्देशांकों में सम्बन्ध (Relation between cartesian and polar co-ordinates) त्रिज्य सदिश एवं स्पर्श रेखा के मध्य कोण (Angle between radius vector and tangent) दो ध्रुवीय वक्रों का प्रतिच्छेन कोण (Angle of intersection of two polar curves) ध्रुवीय स्पर्शी, अधःस्पर्शी, लम्ब एवं अधोलम्ब तथा उनकी लम्बाई...