Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Abbe’s sine condition | Optics

Abbe’s sine condition

Sign convention

For axial or longitudinal distance

  • The distances measured along optic axis or parallel to optic axis are known as axial or longitudinal distance.
  • All the distances measured in the direction of incident ray from optical centre O are taken as positive, and all the distances measured in the direction opposite to the incident ray are taken as negative.

For transverse or lateral distance

  • All the distances measured perpendicular to the optic axis are known as transverse or lateral distances.
  • The transverse distances above the optic axis are taken as positive and the transverse distances below the optic axis are taken as negative.

For angles

  • The angles measured in anticlockwise direction with optic axis are measured as positive, and the angles measured in clockwise directions are measured as negative.
  • ∠ θ1 is negative, and ∠θ2 is positive.

            Note

    • All the longitudinal distances should be measured from optical centre, and all the lateral distances should be measured from optic axis.


      Abbe’s sine condition

    • By using sign convention
    • h1 and v are positive.
    • h2 and u are negative
    • θ1 and i are positive, and θ2 is negative.
    • From △CNM and △CN՛M
    ՛
    • By using sine law in △ANC

    • By using sine law in △AN՛C
    • This is Abbe's since condition.
    • This relation is valid for all the values of θ1 and θ2.
    • In this way a point N on axis imaged as N՛ on the axis by refraction from the surface XY.
    • A surface which does so, is known as aplantic surface, and this surface is used in objectives of microscopes.
    • If aperture of the refracting surface is very small, then θ1 and θ2 will be very small.
    • ∴   sin θ1 ≈ tan θ1 and sin θ2 ≈ tan θ2
    • µ1h1 tan θ1 = µ2h2 tan θ2
    • This is Lagrange’s equation.
    • Also if the values of θ1 and θ2 are very small, then tan θ1 ≈ θ1 and tan θ2 ≈ θ2
    • µ1h1 θ1 = µ2h2 θ2
    • This is Helmholtz equation.

    Comments

    Popular posts from this blog

    Electric field due to circular loop of charge | Electromagnetics

    Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

    Cardinal points of a lens system | Optics | General theory of image formation

    Cardinal points of a lens system There are total six cardinal points of a lens system, which are first and second focal points, first and second principal points, and first and second nodal points. First and second focal points (First and second focal planes) A pair of points lying on the principal axis and conjugate to points at infinity are known as focal points. First and Second focal points A point on the principal axis in the object space so that the rays starting (or appear to start) from it become parallel to the principal axis after refraction from the lens system is known as first focal point (F 1 ). A point on the principal axis in the image space so that the rays parallel to the principal axis in the image space focus (or appear to focus) at this point after refraction from the lens system is known as second focal point (F 2 ). First and Second focal planes The plane passing through the first focal point, and perpendicular to the optic axis is first f...

    MLSU First year Physics Syllabus

    M.L. SUKHADIA UNIVERSITY, UDAIPUR B.Sc. I Year Physics PAPER-I Mechanics of Particles, Rigid Bodies and Continuous media UNIT-I Laws of motion, conservation of energy and momentum, transformation equations for rotating frame, centripetal and Coriolis accelerations, Coriolis force, Coriolis force due to earth’s rotation – experimental demonstration by Foucault pendulum. Motion under a central force, conservation of angular momentum, Kepler’s laws. UNIT-II Fields and potential, gravitational field and potential due to spherical bodies, Gauss's and Poisson's equations, gravitational self energy. Two body problem, reduced mass, scattering and scattering cross sections, illustrations, Rutherford scattering by hard spheres, centre of mass and laboratory reference frames, binary stars. UNIT-III System of particles, centre of mass, calculation of centre of mass of regular bodies, angular momentum, equations of motion, conservation theorems for e...