Skip to main content

National Bird Day: Why Birds Matter to Us

National Bird Day is celebrated every year on 5 January . This day is observed to spread awareness about birds, their importance in nature, and the need to protect them. Birds are beautiful living beings and play a very important role in keeping our environment healthy. Origin of National Bird Day National Bird Day was first celebrated in the year 2002 . It was started by bird lovers and environmental groups to protect birds from dangers like deforestation, pollution, and illegal hunting. The main aim of this day is to teach people, especially students, why birds are important and how we can help save them. Why Is National Bird Day Celebrated Every Year? National Bird Day is celebrated every year because many bird species are disappearing due to human activities. Cutting trees, using plastic, pollution, and climate change are harming birds and their homes. This day reminds us that: Birds need protection Nature should be respected Everyone has a responsibil...

Abbe’s sine condition | Optics

Abbe’s sine condition

Sign convention

For axial or longitudinal distance

  • The distances measured along optic axis or parallel to optic axis are known as axial or longitudinal distance.
  • All the distances measured in the direction of incident ray from optical centre O are taken as positive, and all the distances measured in the direction opposite to the incident ray are taken as negative.

For transverse or lateral distance

  • All the distances measured perpendicular to the optic axis are known as transverse or lateral distances.
  • The transverse distances above the optic axis are taken as positive and the transverse distances below the optic axis are taken as negative.

For angles

  • The angles measured in anticlockwise direction with optic axis are measured as positive, and the angles measured in clockwise directions are measured as negative.
  • ∠ θ1 is negative, and ∠θ2 is positive.

            Note

    • All the longitudinal distances should be measured from optical centre, and all the lateral distances should be measured from optic axis.


      Abbe’s sine condition

    • By using sign convention
    • h1 and v are positive.
    • h2 and u are negative
    • θ1 and i are positive, and θ2 is negative.
    • From △CNM and △CN՛M
    ՛
    • By using sine law in △ANC

    • By using sine law in △AN՛C
    • This is Abbe's since condition.
    • This relation is valid for all the values of θ1 and θ2.
    • In this way a point N on axis imaged as N՛ on the axis by refraction from the surface XY.
    • A surface which does so, is known as aplantic surface, and this surface is used in objectives of microscopes.
    • If aperture of the refracting surface is very small, then θ1 and θ2 will be very small.
    • ∴   sin θ1 ≈ tan θ1 and sin θ2 ≈ tan θ2
    • µ1h1 tan θ1 = µ2h2 tan θ2
    • This is Lagrange’s equation.
    • Also if the values of θ1 and θ2 are very small, then tan θ1 ≈ θ1 and tan θ2 ≈ θ2
    • µ1h1 θ1 = µ2h2 θ2
    • This is Helmholtz equation.

    Comments

    Popular posts from this blog

    Electric field due to circular loop of charge | Electromagnetics

    Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

    आवेश तथा उसके गुण | Charge and its properties in Hindi

    आवेश तथा उसके गुण आवेश क्या है कोई नहीं जानता कि आवेश क्या है, केवल हम यह जानते हैं कि आवेश क्या कर सकता है तथा इसके गुण क्या हैं ? आवेश के प्रकार आवेश दो प्रकार के होते हैं, धनावेश तथा ऋणावेश। धनावेश प्रोटॉन के कारण होता है तथा ऋणावेश इलेक्ट्रॉन के कारण। तीसरे प्रकार का कोई आवेश ब्रहाण्ड में विद्यमान नहीं है। आवेश का क्वांटीकरण आवेश सदैव पैकेट के रूप में होता है, सतत्‌ नहीं। किसी वस्तु को दिया गया आवेश सदैव एक न्यूनतम आवेश का पूर्ण गुणज होता है यह न्यूनतम आवेश इलेक्ट्रॉन के आवेश के बराबर होता है, जिसका मान e = 1.6*10 -19 C होता है। q = ne,        यहां n = 0, 1, 2, ... आवेश संरक्षण का नियम आवेश को न तो उत्पन्न किया जा सकता है तथा न ही नष्ट किया जा सकता है, परन्तु इसे निकाय के एक भाग से दूसरे भाग में स्थानान्तरित किया जा सकता है। किसी विलगित निकाय का आवेश सदैव संरक्षित रहता है। Σq i = नियत,           यहां q i = iवे कण का आवेश आवेश के गुण स्थिर विद्युत आव...

    Calculus in Hindi | कलन | Mathematics | BSc

    कलन (Calculus) अवकलन, समाकलन तथा अवकल समीकरण (Differential Calculus, Integral Calculus and Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. चन्द्रपाल सिंह चौहान  ISBN : 978-81-7906-933-2  Price: Rs. 295.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone: +91 9664392614 To buy this book click on Calculus in Hindi by Saraswat This book includes the following topics  पदिक समीकरण एवं चाप की लम्बाई के अवकलज (Pedal Equations and Derivative of the Length of an Arc) ध्रुवीय निर्देशांक (Polar co-ordinates) कार्तीय एवं ध्रुवीय निर्देशांकों में सम्बन्ध (Relation between cartesian and polar co-ordinates) त्रिज्य सदिश एवं स्पर्श रेखा के मध्य कोण (Angle between radius vector and tangent) दो ध्रुवीय वक्रों का प्रतिच्छेन कोण (Angle of intersection of two polar curves) ध्रुवीय स्पर्शी, अधःस्पर्शी, लम्ब एवं अधोलम्ब तथा उनकी लम्बाई...