Skip to main content

हार्मोनल परिवर्तन के कारण कम उम्र में लड़कियों में हो रहा शारीरिक परिवर्तन

हार्मोनल परिवर्तन के कारण कम उम्र में लड़कियों में हो रहा शारीरिक परिवर्तन प्रदुषण और जंक फूड घटा रहा मुश्किल भरे दिन की उम्र लड़कियों में समय से पहले हार्मोनल चेंज के मामले बढ़ रहे हैं। शारीरिक बदलाव के लिए औसत उम्र 13 से 14 साल मानी जाती है, अब 8 से 11-12 साल में वजन बढ़ने जैसी समस्या आ रही है। कम उम्र में मुश्किल भरे दिनों का सामना करना पड़ रहा है। विशेषज्ञों की मानें तो समस्या प्रदुषण और जंक फूड के अत्यधिक सेवन से बढ़ रही है। शरीर में हार्मोनल परिवर्तन, किसी प्रकार की सिस्ट और ट्यूमर जैसे कारण सामने आ रहे हैं। इनके लिए मुख्य कारण निम्न हैं- लड़कियों में हार्मोनल परिवर्तन से पीरियड जल्दी आते हैं। आनुवंशिक समस्या इसके लिए जिम्मेदार हो सकती है। तनाव से भी हार्मोनल परिवर्तन होते हैं। आयरन तथा विटामिन-डी जैसे पोषण तत्वों की कमी भी हार्मोनल परिवर्तन के लिए जिम्मेदार हैं। प्रदुषण के सम्पर्क में रहने पर भी ये समस्या होती है। शरीर में कही भी सिस्ट या ट्यूमर होने पर भी ये सम्भव है। अगर 8 साल से 12 साल की उम्र के बीच किसी बालिका के शरीर में तेजी से परिवर्तन हो तो मुश्...

MLSU Third year Physics Syllabus

M.L. SUKHADIA UNIVERSITY, UDAIPUR B.Sc. III Year Physics

PAPER-I Quantum mechanics, and Atomic and Molecular Physics

UNIT-I

  • Introductory Schrodinger theory: Rise and fall of Plank-Bohr quantum theory, Duality of radiation and matter, de Broglie’s hypothesis, justification for the relation , experimental confirmation.
  • Phase and group velocities of a wave: Formation of a wave packet, illustrations. Uncertainty principle relating to position and momentum, relating to energy and time, application of complementarity principle, photon interpretation of two slit interference, Einstein-de-Broglie relations as a link between particle and wave properties, general equation of wave propagation, propagation of matter waves, time dependent and time independent Schrodinger equations, physical meaning of ψ, conditions to be satisfied by Schrodinger equation as an operator equation. Postulatery approach to wave mechanics, operators, observable and measurements.
  • Operators: Eigen values and eigen functions; linear operators, product of two operators, commuting and non commuting operators, simultaneous eigen functions, orthogonal functions. Hermitian operators, their eigen values, Hermitian adjoint operators, expectation values of an operator.

UNIT-II

  • Simple one dimensional problem: Particle in a box with rigid walls. Concept of a potential well. Wave functions and energies for the ground and excited states; quantization of energy qualitative discussion of the solutions for a shallow potential well.
  • Applications of operator method: Simple harmonic oscillator, step-up and step-down operators, eigen functions and eigen values of the ground state and excited state, zero point energy probability density and its variations with degree of excitation; orthogonality of wave functions.
  • Other one dimensional problems: Step potential, penetration through rectangular barrier. Transmission coefficients, barriers of special shapes, quantum mechanical tunneling, particle in of three dimensional cubical box, degeneracy.

UNIT-III

  • Angular momentum and spin Central force; orbital angular momentum, operators for its Cartesian components, commutation relations, mutual as well as with L2, operators L and L-, their interpretation as step operators eigen values of L, half integral values for quantum numbers. Angular momentum operators in spherical polar coordinates; evaluation of their eigen functions explicitly in terms of the coordinates, their degeneracy.
  • Schrodinger equation for hydrogen atom in spherical polar coordinates; separations into radial and angular variation, qualitative discussion of spherical harmonics. Angular momentum and magnetic moment of electron due to orbital motion, Bohr Magneton.

UNIT-IV

  • Mono valent and divalent atoms 
  • Back ground from quantum theory: The four quantum numbers ; spectral terms arising from L-S coupling, s, p, d, f, notation, selection rules. Half life of excited states, width of a spectral line.
  • Spectra of mono and divalent atoms: Doublet fine structures of hydrogen lines ; screening constant for monovalent atoms, series limits, doublet structure for alkali spectrum. Spectra of helium and alkaline earth atoms, singlet and triplet series. Effect of magnetic field on energy levels : Gyromagnetic ratios for orbital and spin motions; vector model, Lande g factor, strong and weak field effects, illustrative cases of H, Na, Ca and Hg.
  • X-ray spectra: The continuous x-ray spectrum, Duane and Hunt limit. Characteristic x-rays : Mosley’s law, doublet fine structure, H-like character of X-ray states, X-ray absorption spectra, absorption edges.

UNIT-V

  • Sharing of electrons: Formation of molecular orbitals, H2 ions, H molecule, electronic levels, singlet and triplet characters. Rotational energy levels, inter-nuclear distance.
  • Vibrational energy levels, force constants, anharmonicity dissociation energy, isotope effects on rotational and vibrational energies. Raman effect (brief study). Spectra of diatomic molecules : Pure rotation spectra ; selection rules, vibration-rotation spectra, selection rules, vibration-rotation spectra ; selection rules, P, Q and R branches.
  • Electronic band systems, sequences and progressions, Frank-Condon principle. (Statement only, no derivation)
  • Recent developments in Physics including discussion of Nobel prizes in Physics (no questions to be set in the theory examination).

Recommended Book

  • Quantum Mechanics, Atomic and Molecular Physics by Saraswat and Tiwari, Himanshu Publication, Delhi
  • Quantum Mechanics, Atomic and Molecular Physics (Hindi) by Kalra, Kakani and Saraswat, Himanshu Publications, Delhi
    To know about the lectures of Quantum Mechanics please visit on https://www.youtube.com/playlist?list=PLuCcugQ4SlTMXnZy8zCBZuypNpW37ArSQ and for Atomic and Molecular Physics https://www.youtube.com/playlist?list=PLuCcugQ4SlTN3gnsw5IJvRUc43-tkzzUO

    PAPER-II Electrodynamics, Electromagnetic Waves and Relativity

    UNIT-I

    • Motion of charged particles in E and B fields: Case of cathode ray oscillograph, positive ray parabola, velocity selector, magnetic focusing, mass spectrography.
    • Faraday’s law for electromagnetic induction: Faraday’s law integral and differential forms; self-inductance of a solenoid and of a straight conductor, energy stored in an inductor and in the magnetic field. Displacement current; modified Ampere’s law, Maxwell’s equation for time-dependent electromagnetic field in vacuum and in material media, boundary conditions.

    UNIT-II

    • Electromagnetic potentials: Magnetic vector potential A and scalar potential φ. Poisson’s equation for A in terms of current density, solutions for line surface currents. Coulomb and Lorentz gauge transformations, Lorentz law in terms of potentials.
    • Maxwell’s equations and electromagnetic waves: Plane-wave solution for Maxwell’s equation; orthogonality of E, B and propagation vector. Poynting vector; energy and momentum propagation, reflection and transmission at dielectric boundaries (normal incidence), polarization by reflection, Brewster’s angle.

    UNIT-III

    • Electromagnetic waves in conductors: Modified field equation; attenuation of the wave, reflection at and transmission through a conducting surface. Total internal reflection.
    • Radiation from accelerated charges: Modification (Conceptual only) of Coulomb’s law to include velocity and acceleration dependent terms in E field. Radiation from an oscillating dipole and its polarization. Radial and spherical power of electromagnetic radiation, Radiation pressure equation in free space and medium.

    UNIT-IV

    • The Lorentz transformations: Galilean transformations; Newtonian relativity, instances of their failure; electromagnetism, aberration of light, Michelson-Morley experiment; Einstein’s basic postulates and geometric derivation of Lorentz transformations; invariance of Maxwell’s equations, length contraction, simultaneity, synchronization and time dilation, Einstein’s velocity addition rule, Doppler effect in light. Relativistic gravitational Red Shift.

    UNIT-V

    • Relativistic dynamics: Variation of mass with velocity, mass energy equivalence, relativistic formulae for momentum and energy.
    • The structure of space-time: Four vectors; invariance of an interval, time-like, space-like and light-like intervals, Minkowski space.
    • Relativistic electrodynamics: Electric field of a point charge in uniform motion; transverse components, magnetism as a relativistic phenomenon, transformation of E and B fields.
    • Recent developments in Physics including discussion of Nobel prizes in Physics (no questions to be set in the theory examination).

    Recommended Book

    • Electrodynamics, Electromagnetic waves and relativity by Vimal Saraswat, Himanshu Publication, Delhi
    • Electrodynamics, Electromagnetic Waves and Relativity (Hindi) by Kalra, Himanshu Publications, Delhi

    For more detail visit university website

    PAPER-III Solid State, Nuclear and Particle Physics

    UNIT-I

    • Crystal geometry: Crystal lattice, crystal planes and Miller indices, unit cells. Typical crystal structures, coordination number, packing fraction, symmetry elements, rotation, inversion and reflection, point groups and crystal classes, space groups.
    • Crystallography: Bloch functions, Bloch’s theorem, diffraction of X-rays by a crystal lattice. Laue’s formulation of X-ray diffraction, reciprocal lattice, Brillouin zones, Laue spots, rotating crystal and Debye-Scherrer methods.
    • Introduction to nano particles: Definition, length scales, importance of nanoscale and Technology.

    UNIT-II

    • Types of binding in solids: Covalent binding and its origin, ionic binding, energy of binding, transition between covalent and ionic binding, metallic binding, Van der Waal’s binding, hydrogen bond.
    • Conduction in metals: Drude’s theory, DC conductivity, AC conductivity, plasma frequency, thermal conductivity of metals, Fermi-Dirac distribution, thermal properties of free-electron gas, Sommerfeld’s theory of conduction in metals.

    UNIT-III

    • Conduction in semiconductors: Bands in solids, metals, insulators and semiconductors. Motion of free electrons on a chain of atoms, effective mass, electrons and holes, donor and acceptor impurities, donor impurity levels. Thermal excitation of carriers, electrical conductivity. Elementary ideas of Hall effect in metals and semiconductors and magnetoresistance.
    • Charge transport in semiconductors: Ionization energy of impurity atoms, carrier concentration in doped semiconductors at high and low temperatures, control of conductivity of semiconductors by impurities and current flow in semi-conductors.

    UNIT-IV

    • Structure of nucleus: Discovery of the nucleus, composition. Basic properties: charge, mass, size, spin, magnetic moment, electric quadrupole moment, binding energy, binding energy per nucleon and its observed variation with mass number of the nucleus. Coulomb energy, volume energy, surface energy, other corrections, explanation of the binding energy curve. Liquid drop model of the nucleus.
    • Nuclear forces: Two-nucleon system, deuteron problem, binding energy, nuclear potential well, results of p-p and n-p scattering experiments, meson theory of nuclear forces e.g. Bartlett, Heisenberg, Majorana forces and potentials (No derivations).
    • Radioactivity: Decay constant and half-life, spectra of emitters, Geiger-Nuttal law, Gamow’s explanation. Beta decay: elementary Fermi’s theory (No derivations). Antineutrino. Nuclear radiation, energy levels.

    UNIT-V

    • Detectors for charged particles: Ion chamber, Geiger counter, resolving time, cloud chamber.
    • Accelerators: Need for accelerators; cyclic accelerators, cyclotron, betatron, synchrocyclotron, variable energy cyclotron, phase stability. Brief introduction to Accelerator facilities in India.
    • Rutherford scattering formula, different types of nuclear reactions.
    • Artificial radioactivity: Nuclear fission, neutron reactions, Fermi and trans-uranic elements, chain reaction, criticality, moderators. Brief discussion of Reactor facilities in India.
    • Discovery of cosmic rays: Hard and soft components, discovery of muon, pion, heavy mesons and hyperons, mass and life time determination for muon and pion.
    • Primary cosmic rays: Extensive air showers, solar modulation of primary cosmic rays, effect of earth’s magnetic field on the cosmic ray trajectories.
    • Elementary particles: Discovery and important properties, Standard Model Strangeness, conservation of strangeness in particle interactions, quark hypothesis, high energy electron scattering from protons, basic interactions of quarks and leptons, interrelation between particle physics and cosmology.
    • Big Bang theory (Brief study, no derivations) Brief introduction to Larger Hadron Collider “Big Bang” experiments at CERN.
    • Recent developments in Physics including discussion of Nobel prizes in Physics (no questions to be set in the theory examination).

    Recommended Book

    • Solid State, Nuclear and Particle Physics by Saraswat and Mandot, Himanshu Publication, Delhi
    • Solid State, Nuclear and Particle Physics (Hindi) by Kalra, Himanshu Publications, Delhi
      To know about the lectures of Nuclear Physics please visit on https://www.youtube.com/playlist?list=PLuCcugQ4SlTMsS572BvyGUNuOCybN4iU3
      For more detail please visit the university website

      Comments

      Popular posts from this blog

      Electric field due to circular loop of charge | Electromagnetics

      Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

      गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब | Kinetic theory of gases and Pressure of an ideal gas in Hindi | Thermodynamics

      गैसों का अणुगति सिद्धान्त तथा आदर्श गैस का दाब गैसों के गतिज सिद्धान्त की अभिधारणाएं एक गैस अत्यन्त छोटे, अदृश्य एवं पूर्णतः प्रत्यास्थ कणों से मिलकर बनी होती है, जो अणु   कहलाते हैं। एक शुद्ध गैस के सभी अणु समदृश होते हैं तथा ये सभी सम्भव दिशाओं में सभी सम्भव वेग से सतत्‌ रूप से गति करते रहते हैं। गैस जिस पात्र में भरी जाती है, वह उस पात्र की दीवारों पर दाब लगाती है। गैस के अणु किन्हीं दो क्रमागत टक्करों के मध्य सीधी रेखा में गति करते हैं। गैस के अणुओं का आकार किन्हीं दो क्रमागत टक्करों के मध्य तय की गई दूरी की तुलना में अनन्त सूक्ष्म होता है। ये टक्करें तात्क्षणिक होती हैं तथा टक्करों में गतिज ऊर्जा की कोई हानि नहीं होती है। अणु एक दूसरे पर कोई बल नहीं लगाते हैं। वे एक दूसरे पर बल केवल टकराने के दौरान लगाते हैं। इनकी सम्पूर्ण आणविक ऊर्जा, गतिज ऊर्जा होती है। गैस के अणुओं का कुल आयतन, उस पात्र के आयतन, जिसमें यह भरी है कि तुलना में नगण्य होता है। गैस में अन्तर-आणविक दूरी बहुत अधिक होती है, जिससे कि गैस के अणु उसके लिए उपलब्ध सम्पूर्ण स्थान में मुक...

      Jacobi-Poisson theorem | Poisson’s second theorem | Classical mechanics

      Jacobi-Poisson theorem Poisson’s second theorem If u and v are any two constants of motion of any given system, then their Poisson bracket [ u , v ] are also a constant of motion. If u is a constants of motion, then [ u , H ] + ∂ u /∂t = 0 ⇒ [ u ,  H ] = - ∂ u /∂t. Given u and v are constant of motion               We have to prove [u, v] is also a constant of motion                     Proof By Jacobi identity This is mathematical form of  Jacobi-Poisson’s theorem or Poisson's second theorem . According to statement of Jacobi-Poisson theorem if  u and v are any two constants of motion of any given system, then their Poisson bracket [ u , v ] are also a constant of motion. To know about Jacobi-Poisson theorem of Poisson second theorem  click on the link for English  and  click on the link for Hindi...

      Adesterra