हार्मोनल परिवर्तन के कारण कम उम्र में लड़कियों में हो रहा शारीरिक परिवर्तन प्रदुषण और जंक फूड घटा रहा मुश्किल भरे दिन की उम्र लड़कियों में समय से पहले हार्मोनल चेंज के मामले बढ़ रहे हैं। शारीरिक बदलाव के लिए औसत उम्र 13 से 14 साल मानी जाती है, अब 8 से 11-12 साल में वजन बढ़ने जैसी समस्या आ रही है। कम उम्र में मुश्किल भरे दिनों का सामना करना पड़ रहा है। विशेषज्ञों की मानें तो समस्या प्रदुषण और जंक फूड के अत्यधिक सेवन से बढ़ रही है। शरीर में हार्मोनल परिवर्तन, किसी प्रकार की सिस्ट और ट्यूमर जैसे कारण सामने आ रहे हैं। इनके लिए मुख्य कारण निम्न हैं- लड़कियों में हार्मोनल परिवर्तन से पीरियड जल्दी आते हैं। आनुवंशिक समस्या इसके लिए जिम्मेदार हो सकती है। तनाव से भी हार्मोनल परिवर्तन होते हैं। आयरन तथा विटामिन-डी जैसे पोषण तत्वों की कमी भी हार्मोनल परिवर्तन के लिए जिम्मेदार हैं। प्रदुषण के सम्पर्क में रहने पर भी ये समस्या होती है। शरीर में कही भी सिस्ट या ट्यूमर होने पर भी ये सम्भव है। अगर 8 साल से 12 साल की उम्र के बीच किसी बालिका के शरीर में तेजी से परिवर्तन हो तो मुश्...
Algebra
Matrices, Theory of Equation and Group Theory
Authors: Dr. Vimal Saraswat, Dr. Gajendrapal Singh Rathore
ISBN : 978-93-94954-35-9
Price: Rs. 385.00
Publisher: Himanshu Publications, Hiran Magri Udaipur; Himanshu Publications Prakash House, Ansari Road, New Delhi
E-mail : info@sacademy.co.in
Phone: +91 9664392614
To buy this book click on Algebra by Saraswat
Matrix and its Rank
- Introduction
- Types of matrices
- Operation on matrices or matrix algebra
- Properties of matrix addition
- Properties of scalar multiplication of matrix
- Trace of a matrix
- Multiplication of matrices
- Properties of matrix multiplication
- Transpose matrix
- Symmetric and skew symmetric matrix
- Orthogonal matrix
- Conjugate matrix
- Conjugate transpose matrix or tranjugate matrix
- Unitary matrix
- Hermitian and skew-Hermitian matrices
- Sub matrx of a matrix
- Determinant of a square matrix
- Properties of determinant
- Singular and non-singular matrix
- Adjoint or adjugate matrix
- Inverse of a matrix
- Adjoint method for finding the inverse of a matrix
- Elementary transformation method for finding the inverse of a matrix
- Vector
- Linear combination
- Linear independent and linear dependent vector
- Rank of a matrix
- Column rank and row rank of a matrix
- Nullity of a matrix
- Equivalent matrix
- Normal or canonical form of a matrix
Linear Equations, Eigen Values and Eigen Vectors
- Introduction
- System of homogeneous linear equation and their solution
- System of non-homogeneous linear equations and their solution ramer's rule, Inverse matrix method, Elementary transformation method
- Condition of consistency
- Working method for finding the solution of system of non-homogeneous linear equations
- Triangular or echelon form of a matrix
- Characteristics equation of a matrix
- Cayley-Hamilton theorem
- Application of Cayley-Hamilton's theorem
- Eigen values and eigen vectors
- Properties of eigen values of any characteristic equation
- Nature of characteristic root or eigen values of some special type of matrices
Theory of Equations
- Introduction
- Rational integral function or polynomials
- Equation
- Roots of an equation
- सIdentity
- Properties of equation
- Relation between roots and coefficients of equation
- Solution of equation using relations of roots and coefficients
- Symmetric function of the roots
- Transformation of equations Equation whose roots are k times the roots of a given equation, Equation whose roots are oppositely signed of a given equation, Equation whose roots are the reciprocals of the roots of a given equation
- Reciprocal equation
- Synthesis division To diminish the roots by a given number; To remove a particular terms of an equation
Cubic and Biquadratic Equations
- Introduction
- Descarte’s rule of sign
- Solution of cubic equation by Cardon’s method
- Solution of general cubic equation by Cardon’s methods
- Nature of the roots of cubic equations
- Solution of biquadratic equation by Ferrari’s method
- Newton’s method of approximation/li>
- Horner's method
Group
- Introduction
- Cartesian product
- Algebraic structure
- Binary operation
- Group
- Finite and infinite group
- Groupoid or quasi group
- Semi-group
- Monoid
- Commutative or abelian group
- Order of a group
- Modulo operation
- Uniqueness property in group
- Properties of inverse in group
- Cancellation law in group
- Left and right identity element
- Left and right inverse
- Theorems based on semi group
- Integral power of an element of group
- Order of an element of a group
- Klein's 4-group
- Theorems based on order of element of a group
Subgroup
- Introduction
- Subgroup
- Examples of subgroup
- Multiplication of complexes of a group
- Inverse of a complex of a group
- Necessary and sufficient condition for a subgroup
- Necessary and sufficient condition for a finite subset to be a subgroup
- Necessary and sufficient condition for union to be a subgrop
- Coset
- Lagrange's theorem
- Index of subgroup
- Relation of congruence modulo of a group with respect to a sugroup
- Euler's ф function
- Properties of Euler's ф function
- Euler's theorem
- Fermat's theorem
Cyclic Group
- Introduction
- Cyclic group
- Theorems based on cyclic group
Normal Subgroup and Quotient Group
- Introduction
- Normal subgroup
- Simple group
- Theorem based on normal subgroup
- Quotient group
- Commutator subgroup
Permutation Group
- Introduction
- Permutation
- Equivalent or equal permutation
- Identity permutation)/li>
- Product of permutation
- Inverse permutation
- Permutation group
- Symmetric group
- Cyclic permutation or cycles and the length of cyclic permutation
- Inverse of cycle
- Order of a cycle
- Disjoint cycles
- Order of permutation
- Transposition
- Even and odd permutation
Group Homomorphism
- Introduction
- Homomorphism
- Types of homomorphism Monomorphism, Epimorphism, Isomorphism, Endomorphism, Automorphism
- Kernel of homomorphism
- Theorem based on homomorphism
- Natural homomorphism
- Fundamental theorem of homomorphism
- Three theorems on isomorphism
- Cayley's theorem
- Inner automorphism
Centre of group, Normalizer and Class equation
- Introduction
- Conjugate elements
- Conjugate class
- Self-conjugate element
- Normalizer of an element
- Centre of group
Comments
Post a Comment