Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

डुलोंग और पेटिट का नियम | H-4 | Dulong and Petit's law in Hindi

डुलोंग और पेटिट का नियम

  • डूलोंग तथा पेटिट के नियमानुसार ठोस अवस्था में सभी तत्वों के परमाणु भार तथा विशिष्ट ऊष्माओं का गुणनफल नियत रहता है तथा इसका मान लगभग 6.4 प्राप्त होता है।
  • इस नियम का उपयोग पदार्थ के परमाण्विक भार को ज्ञात करने में किया जाता है।

    गतिज सिद्धान्त से डूलोंग तथा पेटिट का नियम

  • ऊर्जा समविभाजन के नियमानुसार प्रत्येक स्वतंत्रता कोटि से सम्बद्ध औसत स्थानान्तरीय गतिज ऊर्जा का मान 1/2kT होता है।
  • यदि परमाणु की दोलनीय गति सरल आवर्ती हो, तो प्रत्येक दोलन में औसत गतिज ऊर्जा का मान, औसत स्थितिज ऊर्जा के मान के बराबर होता है।
        परमाणु की प्रत्येक स्वतंत्रता कोटि से सम्बद्ध कुल ऊर्जा  = 1/2 kT + 1/2 kT = kT
        चूंकि प्रत्येक परमाणु के लिए दोलनीय गति की तीन स्वतंत्रता कोटि होती हैं।
        अतः प्रत्येक परमाणु के लिए कुल ऊर्जा = 3kT
        यदि हम परम्‌ ताप  T  पर किसी ठोस के 1 ग्राम-परमाणु पर विचार करें,तो 
        1 ग्राम-परमाणु गैस में परमाणुओं की संख्या = N, जहां N आवागाद्रो संख्या है।
        1 ग्राम ठोस की कुल ऊर्जा
                  U = N * 3 kT = 3NkT                      [ R = Nk ]
                  U = 3RT
                 dU/dT = 3R
        चूंकि dU/dT नियत आयतन पर ठोस की परमाण्विक ऊष्मा, अर्थात्‌ Cहै।            
       ∴        Cv = 3R
       ∵        R = 1.98 cal/gm-atom/°C
        ∴      Cv = 3 * 1.98 = 5.94 cal/gm-atom/°C
        ठोस की परमाण्विक ऊष्मा ≈ 6 cal cal/gm-atom/°C 
        इस प्रकार यह डूलोंग तथा पेटिट के नियम से मेल खाता है।

डूलोंग—पेटिट नियम की असफलताएं

  • C, B, Si जैसे अधात्विक तत्वों की परमाण्विक ऊष्माओं का मान सामान्य ताप पर 6.4 से भिन्न प्राप्त होता है, इनका मान लगभग 6.0 होता है।
  • परन्तु 500°C से उच्च ताप पर इनका मान लगभग 6.4 की ओर अग्रसर होता है।
  • परम्‌ शून्य ताप पर सभी तत्वों के लिए परमाण्विक ऊष्मा का मान शून्य की ओर अग्रसर होता है।
जो निम्न चित्र से स्पष्ट है।


        डूलोंग-पेटिट नियम की असफलता का स्पष्टीकरण

  • आइन्सटीन के अनुसार किसी ठोस की प्रत्येक स्वतंत्रता कोटि के संगत कम्पन्न ऊर्जा  h𝝂/exp[(h𝝂/kT - 1)] होती है, kT नहीं होती है।
  • जहां  𝝂 कम्पन्न की आवृति है।
  • चूंकि 3 स्वतंत्रता कोटि होती हैं।
  • ∴    1 ग्राम-परमाणु ठोस की कुल कम्पन्न ऊर्जा
  • उच्च ताप पर h𝝂/kT का मान अत्यन्त अल्प होता है।
  • ∴   Cv → 3R = 3* 1.98 ≈ 6           (∵ R = 1.98)
  • डूलोंग-पेटिट के नियम का पालन करता है।
  • निम्न ताप पर, T → 0, h𝝂/kT → 0,    Cv → 0
To know about this lecture in more detail please visit on https://youtu.be/RxCNY0VDJnc

Comments

Popular posts from this blog

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

फर्मी डिराक सांख्यिकी | Fermi Dirac statistics in Hindi

फर्मी डिराक सांख्यिकी यह सांख्यिकी फर्मीऑन या फर्मी कणों पर आरोपित की जाती है, अर्थात् वे कण जो अविभेदित हों तथा जिनकी चक्रण क्वांटन संख्या अर्द्ध पूर्णांक हो। कण एक दूसरे से अविभेदित होते हैं। प्रत्येक कोश या उपस्तर में 0 या 1 कण हो सकता है, अर्थात्‌ g i,  >> n i निकाय में कुल कणों की संख्या सदैव नियत रहती है, n = Σn i  = नियत विभिन्न समूहों में स्थित सभी कणों की ऊर्जा का योग अर्थात् निकाय की कुल ऊर्जा सदैव नियत रहती है E = Σn i ε i  = नियत हम n स्वतंत्र समरूप कण, जिनका चक्रण अर्द्ध पूर्णांक है, पर विचार करते हैं। इन कणों को क्वांटम समूहों या स्तरों में इस प्रकार वितरित करना है कि ऊर्जा स्तर             ε 1,  ε 2,  ε 3, ... ε i  अपभ्रष्टता             g 1,  g 2,  g 3, ... g i  कणों की संख्या     n 1,  n 2,  n 3, ... n i  हम एक बक्से पर विचार करते है। इस बक्से में g i  भाग हैं, जिसमें n i  कणों ...