Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Grand canonical ensemble | Statistical mechanics | L-9

Grand canonical ensemble

Grand canonical ensemble

  • Microcanonical ensemble is a collection of independent assemblies in which energy (E), volume (V), and number of particles (N) remain constant.
  • Canonical ensemble is a collection of independent assemblies in which temperature (T), volume (V), and number of particles (N) remain constant.
  • It mean a microcanonical ensemble ⟶ Canonical ensemble, if we ignore the condition E = constant.
  • Therefore the energy exchange takes place in this ensemble.
  • Actually in chemical process, the number of particles N varies and it is very difficult to keep the number of particles constant in various phenomenon like radioactive decay process.
  • Thus grand canonical ensemble is an ensemble in which the exchange of energy as well as the number of particles takes place with the heat reservoir.
  • The grand canonical ensemble is a collection of essentially independent assemblies having the same temperature T, volume V, and a chemical potential µ.

  • Thus grand canonical ensemble is a situation in which we know both the average energy and the average number of particles in assembly, otherwise we don’t know the state of the system.
  • The density function in Гspace for grand canonical ensemble = ρ (p, q, N)
  • Here p is momenta, q is coordinate and N is number of particles.
  • To find ρ (p, q, N), we consider the canonical ensemble for a system with particles N, volume V and temperature T.
  • Here we can not take exactly V = constant, so our focus is on a small sub-volume V1 of the system.
  • Let N1 particles be in volume V1, and N2 particles be in volume V2
  • N1 + N2 = N   ⇒   N2 = N - N1    and    V1 + V2 = V   ⇒   V2 = V - V1
  • Also we assume that V2 >> V1 and N2 >> N1
  • If H1 and H2 be the Hamiltonian of the system then
  • The total Hamiltonian of the composite system
  • H (p, q, N) = H1 (p1, q1, N1) + H2 (p2, q2, N2)

Partition function of the system

  • The partition function of the total system
  • Here A (N, V, T) is the Helmholtz free energy.
  • In the last term we consider that the system under consideration to become infinite in size or 0 ≤ N < ∞.
  • For thermodynamic function, we define grand partition function

Average number of particle

  • By ensemble average, the average number of particles

Internal energy

To know more about this topic please click the link https://youtu.be/1dpbmImt8UE

Comments

Popular posts from this blog

Electric field due to circular loop of charge | Electromagnetics

Electric field due to circular loop of charge Electric field The space around a charged particle in which another charge experience a force is known as electric field. The source of electric field is either a charge or a time varying magnetic field. If the value of electric field does not change with time, then it will be uniform electric field, otherwise it will be non-uniform electric field. Electric field due to circular loop of charge If λ is linear charge density, then the charge on d l dq = λ d l      ⇒     dq = (q / 2πa) d l Electric field at P due to charge dq Special cases When P lies at the centre of the loop i. e., r = 0, then E = 0 When P lies very far from the centre of the loop i. e., r >> a, then E = kq / r 2 In this case circular loop behaves as a point charge. To know more about this topic please click on the link  https://youtu.be/54MIe0Ow43w   or...

Cardinal points of a lens system | Optics | General theory of image formation

Cardinal points of a lens system There are total six cardinal points of a lens system, which are first and second focal points, first and second principal points, and first and second nodal points. First and second focal points (First and second focal planes) A pair of points lying on the principal axis and conjugate to points at infinity are known as focal points. First and Second focal points A point on the principal axis in the object space so that the rays starting (or appear to start) from it become parallel to the principal axis after refraction from the lens system is known as first focal point (F 1 ). A point on the principal axis in the image space so that the rays parallel to the principal axis in the image space focus (or appear to focus) at this point after refraction from the lens system is known as second focal point (F 2 ). First and Second focal planes The plane passing through the first focal point, and perpendicular to the optic axis is first f...

MLSU First year Physics Syllabus

M.L. SUKHADIA UNIVERSITY, UDAIPUR B.Sc. I Year Physics PAPER-I Mechanics of Particles, Rigid Bodies and Continuous media UNIT-I Laws of motion, conservation of energy and momentum, transformation equations for rotating frame, centripetal and Coriolis accelerations, Coriolis force, Coriolis force due to earth’s rotation – experimental demonstration by Foucault pendulum. Motion under a central force, conservation of angular momentum, Kepler’s laws. UNIT-II Fields and potential, gravitational field and potential due to spherical bodies, Gauss's and Poisson's equations, gravitational self energy. Two body problem, reduced mass, scattering and scattering cross sections, illustrations, Rutherford scattering by hard spheres, centre of mass and laboratory reference frames, binary stars. UNIT-III System of particles, centre of mass, calculation of centre of mass of regular bodies, angular momentum, equations of motion, conservation theorems for e...