Skip to main content

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल 30 नवम्बर को राजस्थान वन विभाग उदयपुर डिविजन तथा WWF-India उदयपुर डिविजन के सानिध्य में महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल की गई, जिसमें WWF-India के स्टेट काॅर्डिनेटर श्रीमान अरूण सोनी तथा वन विभाग कीे ओर से डाॅ. सतीश कुमार शर्मा, सेवानिवृत्त अधिकारी मौजूद थे। मुझे भी इस इको ट्रेल में जाने का सुअवसर प्राप्त हुआ, जो गोरीला व्यू पाॅइंट से बड़ी-लेक व्यू पाॅइंट तक की गई इसमें मुझे विज्ञान की एक नई शाखा के बारे में पता चला, जिसे टट्टी विज्ञान कहा जाता है। सुनने में आपको थोड़ा अजीब लगेगा, मुझे भी सुनकर हैरानी हुई, परन्तु वास्तव में एक ऐसा भी विज्ञान है, जिसके बारे में डाॅ. सतीश शर्मा ने बड़े ही विस्तार पूर्वक बताया कि किस प्रकार वनों में जानवरों की टट्टी देखकर यह पता लगाया जा सकता है कि यहां कौनसा जानवर आया था। जानवरों की टट्टी कितनी पुरानी है, वह गीली है या सूखी है। इसी के आधार पर उस विशेष जंगल में कौन-कौनसे जानवर विचरण करते हैं, उसके बारे में वन विज्ञान के कर्मचारी पता लगा लेते हैं। जानवरों की टट्टी का विश्लेषण करके यह पता लगा...

Grand canonical ensemble | Statistical mechanics | L-9

Grand canonical ensemble

Grand canonical ensemble

  • Microcanonical ensemble is a collection of independent assemblies in which energy (E), volume (V), and number of particles (N) remain constant.
  • Canonical ensemble is a collection of independent assemblies in which temperature (T), volume (V), and number of particles (N) remain constant.
  • It mean a microcanonical ensemble ⟶ Canonical ensemble, if we ignore the condition E = constant.
  • Therefore the energy exchange takes place in this ensemble.
  • Actually in chemical process, the number of particles N varies and it is very difficult to keep the number of particles constant in various phenomenon like radioactive decay process.
  • Thus grand canonical ensemble is an ensemble in which the exchange of energy as well as the number of particles takes place with the heat reservoir.
  • The grand canonical ensemble is a collection of essentially independent assemblies having the same temperature T, volume V, and a chemical potential µ.

  • Thus grand canonical ensemble is a situation in which we know both the average energy and the average number of particles in assembly, otherwise we don’t know the state of the system.
  • The density function in Гspace for grand canonical ensemble = ρ (p, q, N)
  • Here p is momenta, q is coordinate and N is number of particles.
  • To find ρ (p, q, N), we consider the canonical ensemble for a system with particles N, volume V and temperature T.
  • Here we can not take exactly V = constant, so our focus is on a small sub-volume V1 of the system.
  • Let N1 particles be in volume V1, and N2 particles be in volume V2
  • N1 + N2 = N   ⇒   N2 = N - N1    and    V1 + V2 = V   ⇒   V2 = V - V1
  • Also we assume that V2 >> V1 and N2 >> N1
  • If H1 and H2 be the Hamiltonian of the system then
  • The total Hamiltonian of the composite system
  • H (p, q, N) = H1 (p1, q1, N1) + H2 (p2, q2, N2)

Partition function of the system

  • The partition function of the total system
  • Here A (N, V, T) is the Helmholtz free energy.
  • In the last term we consider that the system under consideration to become infinite in size or 0 ≤ N < ∞.
  • For thermodynamic function, we define grand partition function

Average number of particle

  • By ensemble average, the average number of particles

Internal energy

To know more about this topic please click the link https://youtu.be/1dpbmImt8UE

Comments

Popular posts from this blog

Differential equations in Hindi | अवकल समीकरण | Mathematics | BSc

अवकल समीकरण (Differential equations) साधारण अवकल समीकरण तथा आंशिक अवकल समीकरण (Ordinary Differential Equation and Partial Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. गजेन्द्रपाल सिंह राठौड़ ISBN : 978-81-7906-969-1 Price: Rs. 385.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Differential Equations by Saraswat This book includes the following topics  यथार्थ एवं विशिष्ट रूप वाली अवकल समीकरण (Exact Differential Equations and Equations of Special Forms) परिचय (Introduction) nवीं कोटि के यथार्थ रैखिक अवकल समीकरण (Exact linear differential equation of nth order) nवीं कोटि के रैखिक अवकल समीकरण की यथार्थता का प्रतिबन्ध (Condition of exactness of a linear differential equation of order n) समाकलन गुणांक अरैखिक अवकल समीकरण की यथार्थता (Exactness of ...

Calculus in Hindi | कलन | Mathematics | BSc

कलन (Calculus) अवकलन, समाकलन तथा अवकल समीकरण (Differential Calculus, Integral Calculus and Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. चन्द्रपाल सिंह चौहान  ISBN : 978-81-7906-933-2  Price: Rs. 295.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone: +91 9664392614 To buy this book click on Calculus in Hindi by Saraswat This book includes the following topics  पदिक समीकरण एवं चाप की लम्बाई के अवकलज (Pedal Equations and Derivative of the Length of an Arc) ध्रुवीय निर्देशांक (Polar co-ordinates) कार्तीय एवं ध्रुवीय निर्देशांकों में सम्बन्ध (Relation between cartesian and polar co-ordinates) त्रिज्य सदिश एवं स्पर्श रेखा के मध्य कोण (Angle between radius vector and tangent) दो ध्रुवीय वक्रों का प्रतिच्छेन कोण (Angle of intersection of two polar curves) ध्रुवीय स्पर्शी, अधःस्पर्शी, लम्ब एवं अधोलम्ब तथा उनकी लम्बाई...

Aplanatic points of a spherical refracting surface | Optics | General theory of image formation

Aplanatic points of a spherical refracting surface From Abbe’s sine condition                                  If this ratio is constant for a particular surface, then the surface is known as aplanatic surface . An aplanatic surface is a surface which forms a point image of a point object situated on its axis. The image formed by aplanatic surface is free from optical aberrations. Using sine law in △OPC                                                                            ...(1) Since refraction is taking place from denser to rarer, so from Snell's law              ...