Skip to main content

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन

भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती पर व्याख्यान का आयोजन विज्ञान भारती उदयपुर इकाई एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में कार्यक्रम सम्पन्न उदयपुर, 2 अगस्त। भारतीय रसायन के पिता आचार्य प्रफुल्ल चंद्र रे की जयंती के अवसर पर विज्ञान भारती उदयपुर इकाई (चित्तौड़ प्रांत) एवं बीएन कॉलेज ऑफ फार्मेसी, बीएन विश्वविद्यालय के संयुक्त तत्वावधान में एक विशेष व्याख्यान का आयोजन किया गया। कार्यक्रम का उद्देश्य आचार्य पी.सी. रे के वैज्ञानिक योगदान एवं उनके देशभक्ति से ओतप्रोत जीवन पर प्रकाश डालना था। ज्ञातव्य है कि भारत की पहली फार्मा कंपनी आचार्य रे ने ही बंगाल केमिकल एंड फार्मास्यूटिकल्स लिमिटेड, कोलकाता में 1901 में प्रारंभ की थी। कार्यक्रम में विज्ञान भारती के उद्देश्य एवं गतिविधियों की जानकारी डॉ. अमित गुप्ता द्वारा दी गई। आचार्य पी.सी. रे के जीवन और कार्यों पर मुख्य व्याख्यान डॉ. लोकेश अग्रवाल द्वारा प्रस्तुत किया गया। उन्होंने बताया कि कैसे आचार्य रे ने विज्ञान को समाज की सेवा का माध्यम बनाया और रसायन विज्ञान में भारत को आत्मनिर्भर बनान...

Kinetic theory of gas and Pressure of an ideal gas | L-1 | Thermodynamics

Kinetic theory of gas and Pressure of an ideal gas

Postulates of kinetic theory of gases

  • A gas is made of tiny invisible, perfectly elastic particles. These particles are known as molecules.
  • All the molecules of a pure gas are identical and they move continuously in all possible directions with all possible velocities.
  • The gas exerts a pressure on the walls of chamber in which it is filled.
  • The gaseous molecules collide with each other continuously and they traverse a straight line path between any two successive collisions.
  • The size of the molecules is infinitely small as compared to the distance traversed by the molecules in between any two successive collisions.
  • The collisions are instantaneous and there is no loss of kinetic energy in the collisions.
  • The molecules exert no force on each other, except when they collide, and the whole molecular energy is kinetic.
  • The volume of the gaseous molecules is negligible in comparison to the volume of the vessel in which gas is filled.
  • The intermolecular distance in a gas is very large, so the molecules are free to move in the entire space available to them.

Mean free path

  • The distance between any two successive collision is free path, and the mean of these free paths is mean free path.

Pressure of an ideal gas

  • Let the components of c1 in X, Y and Z directions are u1, v1 and w1 respectively.

  • Let the molecules strikes the wall ABCD with velocity u1
  • The momentum of the molecule along X-direction = mu1
  • Since the molecules and the walls are perfectly elastic, so during collision the velocity of the particles does not change, only its direction reverses.
  • The momentum of the molecule along X-direction after collisions = – mu1
  • Therefore the change in momentum during one collision = mu1 – (mu1) = 2mu1
  • The molecule traverse 2l distance with the velocity u1, before striking again to the same wall ABCD.
  • So, the time taken by molecule between two successive collisions with the walls ABCD = 2l / u1
  • Now, the number of collisions per second with the walls ABCD = u/ 2l
  • The change in momentum per second due to collision of this molecule with the wall ABCD = 2mu1 × (u/ 2l) = mu1l
  • The net change in momentum per second due to all the n molecules striking the face ABCD, dp/dt = mu1l + mu2l + mu3l + ... + mun/ l = (m / l ) Σu2
  • According to Newton's second law force F = dp/dt
  • Force exerted by gas on the face ABCD of the vessel = (m / l ) Σu2
  • If A is the area, then the pressure P = F/A
  • Pressure on the wall ABCD,   Px = (m / l ) Σu2 × (1 / l2) = (m / l3) Σu2
  • Since volume of chamber,   V = l3
  • ∴     Px = (m / V) Σu2
  • Similarly  Py = (m / V) Σv2     and     Pz = (m / V) Σw2
  • If the size of cube is very small, Px = Py =Pz = P
  • ∴     3P = (m / V) Σ (u2 + v2 + w2)
  • or    P = (m / 3V) Σ (u2 + v2 + w2)
  • ∵     c= u2 + v2 + w2)
  • ∴     P = (m / 3V) Σ c2 

Comments

Popular posts from this blog

सांवरिया सेठ के भंडारे से निकले सवा ग्यारह करोड़ रूपए

सांवरिया सेठ के भंडारे से निकले सवा ग्यारह करोड़ रूपए चित्तौड़गढ़ जिले में स्थित प्रख्यात कृष्णधाम श्रीसांवरिया स्थित सांवरा सेठ मंदिर के भंडारे से सवा ग्यारह करोड़ रूपए, 318 ग्राम सोना और लगभग 36 किलो चांदी चढ़ावे के रूप में प्राप्त हुई। मंगलवार 13 फरवरी 2024 को मंदिर भंडारे की तीसरे दौर की गणना की गई, जिसमें 66 लाख 53 हजार 676 रूपए नगद प्राप्त हुई। ऑनलाईन, मनीऑर्डर एवं भेट कक्ष में 2 करोड़ 34 लाख 80 हजार 325 रूपए प्राप्त हुई। इस प्रकार कुल 11 करोड़ 27 लाख 10 हजार एक रूपए प्राप्त हुई।  To follow our blog  click here For similar post  click here Our other websites For Education For Placements   For Bhakti   For Recipes   Our Application Our YouTube channels Sacademy Atharavpur Keywords: सांवरिया सेठ स्टेटस,सांवरिया सेठ दे दे,न्यू सांवरिया जी भजन,गोकुल शर्मा सांवरिया भजन,सांवरिया सेठ,सांवलिया सेठ मंदिर का इतिहास,सांवरिया सेठ भजन,सुण ले सेठां वाला सेठ सांवरिया,सेठ तो सांवरिया सेठ,सांवरिया सेठ मंडफिया,मंडफिया सांवरिया सेठ,सांवरिया सेठ के दर्शन,सांवरिया सेठ न्...

B.N.U. First Semester Physics Syllabus

B.N. UNIVERSITY, UDAIPUR B.Sc. I Semester Physics PHYS MJ 111T: MECHANICS UNIT-I Laws of motion and Frame of reference: Laws of motion, conservation of momentum and energy, Co-ordinate frames, inertial and non-inertial frame of reference, Galilean transformation and invariance, fictitious force, centrifugal force, transformation of coordinate, velocity, acceleration and displacement in a rotating frame of reference, uniformly rotating frame of reference, Coriolis force, effect of centrifugal and Coriolis force due to earth’s rotation, Foucault’s pendulum. UNIT-II Gravitational Field and Potential: Newton’s universal law of gravitation, gravitational field intensity, gravitational potential due to spherical shell and solid sphere, gravitational potential energy, Laplace and Poisson’s equations, Gauss’s law, gravitational self-energy of a uniform sphere. Dynamics of System of Particles: Centre of mass, calculation of centre of mass of regular rigid bodies ...

Cardinal points of a lens system | Optics | General theory of image formation

Cardinal points of a lens system There are total six cardinal points of a lens system, which are first and second focal points, first and second principal points, and first and second nodal points. First and second focal points (First and second focal planes) A pair of points lying on the principal axis and conjugate to points at infinity are known as focal points. First and Second focal points A point on the principal axis in the object space so that the rays starting (or appear to start) from it become parallel to the principal axis after refraction from the lens system is known as first focal point (F 1 ). A point on the principal axis in the image space so that the rays parallel to the principal axis in the image space focus (or appear to focus) at this point after refraction from the lens system is known as second focal point (F 2 ). First and Second focal planes The plane passing through the first focal point, and perpendicular to the optic axis is first f...