Skip to main content

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर

महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल 30 नवम्बर को राजस्थान वन विभाग उदयपुर डिविजन तथा WWF-India उदयपुर डिविजन के सानिध्य में महाराणा प्रताप ट्रेल सज्जनगढ़ उदयपुर में इको ट्रेल की गई, जिसमें WWF-India के स्टेट काॅर्डिनेटर श्रीमान अरूण सोनी तथा वन विभाग कीे ओर से डाॅ. सतीश कुमार शर्मा, सेवानिवृत्त अधिकारी मौजूद थे। मुझे भी इस इको ट्रेल में जाने का सुअवसर प्राप्त हुआ, जो गोरीला व्यू पाॅइंट से बड़ी-लेक व्यू पाॅइंट तक की गई इसमें मुझे विज्ञान की एक नई शाखा के बारे में पता चला, जिसे टट्टी विज्ञान कहा जाता है। सुनने में आपको थोड़ा अजीब लगेगा, मुझे भी सुनकर हैरानी हुई, परन्तु वास्तव में एक ऐसा भी विज्ञान है, जिसके बारे में डाॅ. सतीश शर्मा ने बड़े ही विस्तार पूर्वक बताया कि किस प्रकार वनों में जानवरों की टट्टी देखकर यह पता लगाया जा सकता है कि यहां कौनसा जानवर आया था। जानवरों की टट्टी कितनी पुरानी है, वह गीली है या सूखी है। इसी के आधार पर उस विशेष जंगल में कौन-कौनसे जानवर विचरण करते हैं, उसके बारे में वन विज्ञान के कर्मचारी पता लगा लेते हैं। जानवरों की टट्टी का विश्लेषण करके यह पता लगा...

Kinetic theory of gas and Pressure of an ideal gas | L-1 | Thermodynamics

Kinetic theory of gas and Pressure of an ideal gas

Postulates of kinetic theory of gases

  • A gas is made of tiny invisible, perfectly elastic particles. These particles are known as molecules.
  • All the molecules of a pure gas are identical and they move continuously in all possible directions with all possible velocities.
  • The gas exerts a pressure on the walls of chamber in which it is filled.
  • The gaseous molecules collide with each other continuously and they traverse a straight line path between any two successive collisions.
  • The size of the molecules is infinitely small as compared to the distance traversed by the molecules in between any two successive collisions.
  • The collisions are instantaneous and there is no loss of kinetic energy in the collisions.
  • The molecules exert no force on each other, except when they collide, and the whole molecular energy is kinetic.
  • The volume of the gaseous molecules is negligible in comparison to the volume of the vessel in which gas is filled.
  • The intermolecular distance in a gas is very large, so the molecules are free to move in the entire space available to them.

Mean free path

  • The distance between any two successive collision is free path, and the mean of these free paths is mean free path.

Pressure of an ideal gas

  • Let the components of c1 in X, Y and Z directions are u1, v1 and w1 respectively.

  • Let the molecules strikes the wall ABCD with velocity u1
  • The momentum of the molecule along X-direction = mu1
  • Since the molecules and the walls are perfectly elastic, so during collision the velocity of the particles does not change, only its direction reverses.
  • The momentum of the molecule along X-direction after collisions = – mu1
  • Therefore the change in momentum during one collision = mu1 – (mu1) = 2mu1
  • The molecule traverse 2l distance with the velocity u1, before striking again to the same wall ABCD.
  • So, the time taken by molecule between two successive collisions with the walls ABCD = 2l / u1
  • Now, the number of collisions per second with the walls ABCD = u/ 2l
  • The change in momentum per second due to collision of this molecule with the wall ABCD = 2mu1 × (u/ 2l) = mu1l
  • The net change in momentum per second due to all the n molecules striking the face ABCD, dp/dt = mu1l + mu2l + mu3l + ... + mun/ l = (m / l ) Σu2
  • According to Newton's second law force F = dp/dt
  • Force exerted by gas on the face ABCD of the vessel = (m / l ) Σu2
  • If A is the area, then the pressure P = F/A
  • Pressure on the wall ABCD,   Px = (m / l ) Σu2 × (1 / l2) = (m / l3) Σu2
  • Since volume of chamber,   V = l3
  • ∴     Px = (m / V) Σu2
  • Similarly  Py = (m / V) Σv2     and     Pz = (m / V) Σw2
  • If the size of cube is very small, Px = Py =Pz = P
  • ∴     3P = (m / V) Σ (u2 + v2 + w2)
  • or    P = (m / 3V) Σ (u2 + v2 + w2)
  • ∵     c= u2 + v2 + w2)
  • ∴     P = (m / 3V) Σ c2 

Comments

Popular posts from this blog

Calculus in Hindi | कलन | Mathematics | BSc

कलन (Calculus) अवकलन, समाकलन तथा अवकल समीकरण (Differential Calculus, Integral Calculus and Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. चन्द्रपाल सिंह चौहान  ISBN : 978-81-7906-933-2  Price: Rs. 295.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone: +91 9664392614 To buy this book click on Calculus in Hindi by Saraswat This book includes the following topics  पदिक समीकरण एवं चाप की लम्बाई के अवकलज (Pedal Equations and Derivative of the Length of an Arc) ध्रुवीय निर्देशांक (Polar co-ordinates) कार्तीय एवं ध्रुवीय निर्देशांकों में सम्बन्ध (Relation between cartesian and polar co-ordinates) त्रिज्य सदिश एवं स्पर्श रेखा के मध्य कोण (Angle between radius vector and tangent) दो ध्रुवीय वक्रों का प्रतिच्छेन कोण (Angle of intersection of two polar curves) ध्रुवीय स्पर्शी, अधःस्पर्शी, लम्ब एवं अधोलम्ब तथा उनकी लम्बाई...

Cardinal points of a lens system | Optics | General theory of image formation

Cardinal points of a lens system There are total six cardinal points of a lens system, which are first and second focal points, first and second principal points, and first and second nodal points. First and second focal points (First and second focal planes) A pair of points lying on the principal axis and conjugate to points at infinity are known as focal points. First and Second focal points A point on the principal axis in the object space so that the rays starting (or appear to start) from it become parallel to the principal axis after refraction from the lens system is known as first focal point (F 1 ). A point on the principal axis in the image space so that the rays parallel to the principal axis in the image space focus (or appear to focus) at this point after refraction from the lens system is known as second focal point (F 2 ). First and Second focal planes The plane passing through the first focal point, and perpendicular to the optic axis is first f...

Differential equations in Hindi | अवकल समीकरण | Mathematics | BSc

अवकल समीकरण (Differential equations) साधारण अवकल समीकरण तथा आंशिक अवकल समीकरण (Ordinary Differential Equation and Partial Differential Equation) लेखक: डॉ. विमल सारस्वत, डॉ. अनिल कुमार मेनारिया, डॉ. गजेन्द्रपाल सिंह राठौड़ ISBN : 978-81-7906-969-1 Price: Rs. 385.00 प्रकाशक: हिमांशु पब्लिकेशन्स, हिरण मगरी उदयपुर; हिमांशु पब्लिकेशन् प्रकाश हाउस, अंसारी रोड, नई दिल्ली E-mail :  info@sacademy.co.in Phone:  +91 9664392614 To buy this book click on the link Differential Equations by Saraswat This book includes the following topics  यथार्थ एवं विशिष्ट रूप वाली अवकल समीकरण (Exact Differential Equations and Equations of Special Forms) परिचय (Introduction) nवीं कोटि के यथार्थ रैखिक अवकल समीकरण (Exact linear differential equation of nth order) nवीं कोटि के रैखिक अवकल समीकरण की यथार्थता का प्रतिबन्ध (Condition of exactness of a linear differential equation of order n) समाकलन गुणांक अरैखिक अवकल समीकरण की यथार्थता (Exactness of ...